Metamath Proof Explorer


Theorem bj-nuliotaALT

Description: Alternate proof of bj-nuliota . Note that this alternate proof uses the fact that iota x ph evaluates to (/) when there is no x satisfying ph ( iotanul ). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-nuliotaALT
|- (/) = ( iota x A. y -. y e. x )

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ ( iota x A. y -. y e. x )
2 iotassuni
 |-  ( iota x A. y -. y e. x ) C_ U. { x | A. y -. y e. x }
3 eq0
 |-  ( x = (/) <-> A. y -. y e. x )
4 3 bicomi
 |-  ( A. y -. y e. x <-> x = (/) )
5 4 abbii
 |-  { x | A. y -. y e. x } = { x | x = (/) }
6 5 unieqi
 |-  U. { x | A. y -. y e. x } = U. { x | x = (/) }
7 df-sn
 |-  { (/) } = { x | x = (/) }
8 7 eqcomi
 |-  { x | x = (/) } = { (/) }
9 8 unieqi
 |-  U. { x | x = (/) } = U. { (/) }
10 0ex
 |-  (/) e. _V
11 10 unisn
 |-  U. { (/) } = (/)
12 6 9 11 3eqtri
 |-  U. { x | A. y -. y e. x } = (/)
13 2 12 sseqtri
 |-  ( iota x A. y -. y e. x ) C_ (/)
14 1 13 eqssi
 |-  (/) = ( iota x A. y -. y e. x )