| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-raldifsn.is | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | difsnid | ⊢ ( 𝐵  ∈  𝐴  →  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } )  =  𝐴 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( 𝐵  ∈  𝐴  →  𝐴  =  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } ) ) | 
						
							| 4 | 3 | raleqdv | ⊢ ( 𝐵  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } ) 𝜑 ) ) | 
						
							| 5 |  | ralunb | ⊢ ( ∀ 𝑥  ∈  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } ) 𝜑  ↔  ( ∀ 𝑥  ∈  ( 𝐴  ∖  { 𝐵 } ) 𝜑  ∧  ∀ 𝑥  ∈  { 𝐵 } 𝜑 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐵  ∈  𝐴  →  ( ∀ 𝑥  ∈  ( ( 𝐴  ∖  { 𝐵 } )  ∪  { 𝐵 } ) 𝜑  ↔  ( ∀ 𝑥  ∈  ( 𝐴  ∖  { 𝐵 } ) 𝜑  ∧  ∀ 𝑥  ∈  { 𝐵 } 𝜑 ) ) ) | 
						
							| 7 | 1 | ralsng | ⊢ ( 𝐵  ∈  𝐴  →  ( ∀ 𝑥  ∈  { 𝐵 } 𝜑  ↔  𝜓 ) ) | 
						
							| 8 | 7 | anbi2d | ⊢ ( 𝐵  ∈  𝐴  →  ( ( ∀ 𝑥  ∈  ( 𝐴  ∖  { 𝐵 } ) 𝜑  ∧  ∀ 𝑥  ∈  { 𝐵 } 𝜑 )  ↔  ( ∀ 𝑥  ∈  ( 𝐴  ∖  { 𝐵 } ) 𝜑  ∧  𝜓 ) ) ) | 
						
							| 9 | 4 6 8 | 3bitrd | ⊢ ( 𝐵  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ( ∀ 𝑥  ∈  ( 𝐴  ∖  { 𝐵 } ) 𝜑  ∧  𝜓 ) ) ) |