Step |
Hyp |
Ref |
Expression |
1 |
|
bj-raldifsn.is |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
difsnid |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = 𝐴 ) |
3 |
2
|
eqcomd |
⊢ ( 𝐵 ∈ 𝐴 → 𝐴 = ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) |
4 |
3
|
raleqdv |
⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) 𝜑 ) ) |
5 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) |
6 |
5
|
a1i |
⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) ) |
7 |
1
|
ralsng |
⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ { 𝐵 } 𝜑 ↔ 𝜓 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝐵 ∈ 𝐴 → ( ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ∧ 𝜓 ) ) ) |
9 |
4 6 8
|
3bitrd |
⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝜑 ∧ 𝜓 ) ) ) |