Metamath Proof Explorer


Theorem bj-0int

Description: If A is a collection of subsets of X , like a Moore collection or a topology, two equivalent ways to say that arbitrary intersections of elements of A relative to X belong to some class B : the LHS singles out the empty intersection (the empty intersection relative to X is X and the intersection of a nonempty family of subsets of X is included in X , so there is no need to intersect it with X ). In typical applications, B is A itself. (Contributed by BJ, 7-Dec-2021)

Ref Expression
Assertion bj-0int ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) 𝑥𝐵 ) ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 𝑥 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssv 𝑋 ⊆ V
2 int0 ∅ = V
3 1 2 sseqtrri 𝑋
4 df-ss ( 𝑋 ∅ ↔ ( 𝑋 ∅ ) = 𝑋 )
5 3 4 mpbi ( 𝑋 ∅ ) = 𝑋
6 5 eqcomi 𝑋 = ( 𝑋 ∅ )
7 6 eleq1i ( 𝑋𝐵 ↔ ( 𝑋 ∅ ) ∈ 𝐵 )
8 7 a1i ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑋𝐵 ↔ ( 𝑋 ∅ ) ∈ 𝐵 ) )
9 eldifsn ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅ ) )
10 sstr2 ( 𝑥𝐴 → ( 𝐴 ⊆ 𝒫 𝑋𝑥 ⊆ 𝒫 𝑋 ) )
11 intss2 ( 𝑥 ⊆ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → 𝑥𝑋 ) )
12 10 11 syl6 ( 𝑥𝐴 → ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → 𝑥𝑋 ) ) )
13 elpwi ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
14 12 13 syl11 ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ∈ 𝒫 𝐴 → ( 𝑥 ≠ ∅ → 𝑥𝑋 ) ) )
15 14 impd ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅ ) → 𝑥𝑋 ) )
16 9 15 syl5bi ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥𝑋 ) )
17 df-ss ( 𝑥𝑋 ↔ ( 𝑥𝑋 ) = 𝑥 )
18 incom ( 𝑥𝑋 ) = ( 𝑋 𝑥 )
19 18 eqeq1i ( ( 𝑥𝑋 ) = 𝑥 ↔ ( 𝑋 𝑥 ) = 𝑥 )
20 eqcom ( ( 𝑋 𝑥 ) = 𝑥 𝑥 = ( 𝑋 𝑥 ) )
21 19 20 sylbb ( ( 𝑥𝑋 ) = 𝑥 𝑥 = ( 𝑋 𝑥 ) )
22 17 21 sylbi ( 𝑥𝑋 𝑥 = ( 𝑋 𝑥 ) )
23 eleq1 ( 𝑥 = ( 𝑋 𝑥 ) → ( 𝑥𝐵 ↔ ( 𝑋 𝑥 ) ∈ 𝐵 ) )
24 23 a1i ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 = ( 𝑋 𝑥 ) → ( 𝑥𝐵 ↔ ( 𝑋 𝑥 ) ∈ 𝐵 ) ) )
25 22 24 syl5 ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥𝑋 → ( 𝑥𝐵 ↔ ( 𝑋 𝑥 ) ∈ 𝐵 ) ) )
26 16 25 syld ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑥𝐵 ↔ ( 𝑋 𝑥 ) ∈ 𝐵 ) ) )
27 26 ralrimiv ( 𝐴 ⊆ 𝒫 𝑋 → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑥𝐵 ↔ ( 𝑋 𝑥 ) ∈ 𝐵 ) )
28 ralbi ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑥𝐵 ↔ ( 𝑋 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) 𝑥𝐵 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 𝑥 ) ∈ 𝐵 ) )
29 27 28 syl ( 𝐴 ⊆ 𝒫 𝑋 → ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) 𝑥𝐵 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 𝑥 ) ∈ 𝐵 ) )
30 8 29 anbi12d ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) 𝑥𝐵 ) ↔ ( ( 𝑋 ∅ ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 𝑥 ) ∈ 𝐵 ) ) )
31 30 biancomd ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) 𝑥𝐵 ) ↔ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 𝑥 ) ∈ 𝐵 ∧ ( 𝑋 ∅ ) ∈ 𝐵 ) ) )
32 0elpw ∅ ∈ 𝒫 𝐴
33 inteq ( 𝑥 = ∅ → 𝑥 = ∅ )
34 ineq2 ( 𝑥 = ∅ → ( 𝑋 𝑥 ) = ( 𝑋 ∅ ) )
35 eleq1 ( ( 𝑋 𝑥 ) = ( 𝑋 ∅ ) → ( ( 𝑋 𝑥 ) ∈ 𝐵 ↔ ( 𝑋 ∅ ) ∈ 𝐵 ) )
36 33 34 35 3syl ( 𝑥 = ∅ → ( ( 𝑋 𝑥 ) ∈ 𝐵 ↔ ( 𝑋 ∅ ) ∈ 𝐵 ) )
37 36 bj-raldifsn ( ∅ ∈ 𝒫 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 𝑥 ) ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 𝑥 ) ∈ 𝐵 ∧ ( 𝑋 ∅ ) ∈ 𝐵 ) ) )
38 32 37 ax-mp ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 𝑥 ) ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 𝑥 ) ∈ 𝐵 ∧ ( 𝑋 ∅ ) ∈ 𝐵 ) )
39 31 38 bitr4di ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) 𝑥𝐵 ) ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 𝑥 ) ∈ 𝐵 ) )