| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssv | ⊢ 𝑋  ⊆  V | 
						
							| 2 |  | int0 | ⊢ ∩  ∅  =  V | 
						
							| 3 | 1 2 | sseqtrri | ⊢ 𝑋  ⊆  ∩  ∅ | 
						
							| 4 |  | dfss2 | ⊢ ( 𝑋  ⊆  ∩  ∅  ↔  ( 𝑋  ∩  ∩  ∅ )  =  𝑋 ) | 
						
							| 5 | 3 4 | mpbi | ⊢ ( 𝑋  ∩  ∩  ∅ )  =  𝑋 | 
						
							| 6 | 5 | eqcomi | ⊢ 𝑋  =  ( 𝑋  ∩  ∩  ∅ ) | 
						
							| 7 | 6 | eleq1i | ⊢ ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) ) | 
						
							| 9 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 10 |  | sstr2 | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝐴  ⊆  𝒫  𝑋  →  𝑥  ⊆  𝒫  𝑋 ) ) | 
						
							| 11 |  | intss2 | ⊢ ( 𝑥  ⊆  𝒫  𝑋  →  ( 𝑥  ≠  ∅  →  ∩  𝑥  ⊆  𝑋 ) ) | 
						
							| 12 | 10 11 | syl6 | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝐴  ⊆  𝒫  𝑋  →  ( 𝑥  ≠  ∅  →  ∩  𝑥  ⊆  𝑋 ) ) ) | 
						
							| 13 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 14 | 12 13 | syl11 | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( 𝑥  ∈  𝒫  𝐴  →  ( 𝑥  ≠  ∅  →  ∩  𝑥  ⊆  𝑋 ) ) ) | 
						
							| 15 | 14 | impd | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ⊆  𝑋 ) ) | 
						
							| 16 | 9 15 | biimtrid | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ∩  𝑥  ⊆  𝑋 ) ) | 
						
							| 17 |  | dfss2 | ⊢ ( ∩  𝑥  ⊆  𝑋  ↔  ( ∩  𝑥  ∩  𝑋 )  =  ∩  𝑥 ) | 
						
							| 18 |  | incom | ⊢ ( ∩  𝑥  ∩  𝑋 )  =  ( 𝑋  ∩  ∩  𝑥 ) | 
						
							| 19 | 18 | eqeq1i | ⊢ ( ( ∩  𝑥  ∩  𝑋 )  =  ∩  𝑥  ↔  ( 𝑋  ∩  ∩  𝑥 )  =  ∩  𝑥 ) | 
						
							| 20 |  | eqcom | ⊢ ( ( 𝑋  ∩  ∩  𝑥 )  =  ∩  𝑥  ↔  ∩  𝑥  =  ( 𝑋  ∩  ∩  𝑥 ) ) | 
						
							| 21 | 19 20 | sylbb | ⊢ ( ( ∩  𝑥  ∩  𝑋 )  =  ∩  𝑥  →  ∩  𝑥  =  ( 𝑋  ∩  ∩  𝑥 ) ) | 
						
							| 22 | 17 21 | sylbi | ⊢ ( ∩  𝑥  ⊆  𝑋  →  ∩  𝑥  =  ( 𝑋  ∩  ∩  𝑥 ) ) | 
						
							| 23 |  | eleq1 | ⊢ ( ∩  𝑥  =  ( 𝑋  ∩  ∩  𝑥 )  →  ( ∩  𝑥  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ∩  𝑥  =  ( 𝑋  ∩  ∩  𝑥 )  →  ( ∩  𝑥  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 25 | 22 24 | syl5 | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ∩  𝑥  ⊆  𝑋  →  ( ∩  𝑥  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 26 | 16 25 | syld | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ( ∩  𝑥  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 27 | 26 | ralrimiv | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( ∩  𝑥  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) | 
						
							| 28 |  | ralbi | ⊢ ( ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( ∩  𝑥  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ∩  𝑥  ∈  𝐵  ↔  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ∩  𝑥  ∈  𝐵  ↔  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) | 
						
							| 30 | 8 29 | anbi12d | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ( 𝑋  ∈  𝐵  ∧  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ∩  𝑥  ∈  𝐵 )  ↔  ( ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵  ∧  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 31 | 30 | biancomd | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ( 𝑋  ∈  𝐵  ∧  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ∩  𝑥  ∈  𝐵 )  ↔  ( ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ∧  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) ) ) | 
						
							| 32 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐴 | 
						
							| 33 |  | inteq | ⊢ ( 𝑥  =  ∅  →  ∩  𝑥  =  ∩  ∅ ) | 
						
							| 34 |  | ineq2 | ⊢ ( ∩  𝑥  =  ∩  ∅  →  ( 𝑋  ∩  ∩  𝑥 )  =  ( 𝑋  ∩  ∩  ∅ ) ) | 
						
							| 35 |  | eleq1 | ⊢ ( ( 𝑋  ∩  ∩  𝑥 )  =  ( 𝑋  ∩  ∩  ∅ )  →  ( ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) ) | 
						
							| 36 | 33 34 35 | 3syl | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ↔  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) ) | 
						
							| 37 | 36 | bj-raldifsn | ⊢ ( ∅  ∈  𝒫  𝐴  →  ( ∀ 𝑥  ∈  𝒫  𝐴 ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ↔  ( ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ∧  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) ) ) | 
						
							| 38 | 32 37 | ax-mp | ⊢ ( ∀ 𝑥  ∈  𝒫  𝐴 ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ↔  ( ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵  ∧  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐵 ) ) | 
						
							| 39 | 31 38 | bitr4di | ⊢ ( 𝐴  ⊆  𝒫  𝑋  →  ( ( 𝑋  ∈  𝐵  ∧  ∀ 𝑥  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ∩  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥  ∈  𝒫  𝐴 ( 𝑋  ∩  ∩  𝑥 )  ∈  𝐵 ) ) |