| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssv |
⊢ 𝑋 ⊆ V |
| 2 |
|
int0 |
⊢ ∩ ∅ = V |
| 3 |
1 2
|
sseqtrri |
⊢ 𝑋 ⊆ ∩ ∅ |
| 4 |
|
dfss2 |
⊢ ( 𝑋 ⊆ ∩ ∅ ↔ ( 𝑋 ∩ ∩ ∅ ) = 𝑋 ) |
| 5 |
3 4
|
mpbi |
⊢ ( 𝑋 ∩ ∩ ∅ ) = 𝑋 |
| 6 |
5
|
eqcomi |
⊢ 𝑋 = ( 𝑋 ∩ ∩ ∅ ) |
| 7 |
6
|
eleq1i |
⊢ ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) ) |
| 9 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 10 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝐴 ⊆ 𝒫 𝑋 → 𝑥 ⊆ 𝒫 𝑋 ) ) |
| 11 |
|
intss2 |
⊢ ( 𝑥 ⊆ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ∩ 𝑥 ⊆ 𝑋 ) ) |
| 12 |
10 11
|
syl6 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ∩ 𝑥 ⊆ 𝑋 ) ) ) |
| 13 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 14 |
12 13
|
syl11 |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ∈ 𝒫 𝐴 → ( 𝑥 ≠ ∅ → ∩ 𝑥 ⊆ 𝑋 ) ) ) |
| 15 |
14
|
impd |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ 𝑋 ) ) |
| 16 |
9 15
|
biimtrid |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∩ 𝑥 ⊆ 𝑋 ) ) |
| 17 |
|
dfss2 |
⊢ ( ∩ 𝑥 ⊆ 𝑋 ↔ ( ∩ 𝑥 ∩ 𝑋 ) = ∩ 𝑥 ) |
| 18 |
|
incom |
⊢ ( ∩ 𝑥 ∩ 𝑋 ) = ( 𝑋 ∩ ∩ 𝑥 ) |
| 19 |
18
|
eqeq1i |
⊢ ( ( ∩ 𝑥 ∩ 𝑋 ) = ∩ 𝑥 ↔ ( 𝑋 ∩ ∩ 𝑥 ) = ∩ 𝑥 ) |
| 20 |
|
eqcom |
⊢ ( ( 𝑋 ∩ ∩ 𝑥 ) = ∩ 𝑥 ↔ ∩ 𝑥 = ( 𝑋 ∩ ∩ 𝑥 ) ) |
| 21 |
19 20
|
sylbb |
⊢ ( ( ∩ 𝑥 ∩ 𝑋 ) = ∩ 𝑥 → ∩ 𝑥 = ( 𝑋 ∩ ∩ 𝑥 ) ) |
| 22 |
17 21
|
sylbi |
⊢ ( ∩ 𝑥 ⊆ 𝑋 → ∩ 𝑥 = ( 𝑋 ∩ ∩ 𝑥 ) ) |
| 23 |
|
eleq1 |
⊢ ( ∩ 𝑥 = ( 𝑋 ∩ ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) |
| 24 |
23
|
a1i |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ∩ 𝑥 = ( 𝑋 ∩ ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) ) |
| 25 |
22 24
|
syl5 |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ∩ 𝑥 ⊆ 𝑋 → ( ∩ 𝑥 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) ) |
| 26 |
16 25
|
syld |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∩ 𝑥 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) ) |
| 27 |
26
|
ralrimiv |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ∩ 𝑥 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) |
| 28 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ∩ 𝑥 ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∩ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∩ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) |
| 30 |
8 29
|
anbi12d |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∩ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) ) |
| 31 |
30
|
biancomd |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∩ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ∧ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) ) ) |
| 32 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
| 33 |
|
inteq |
⊢ ( 𝑥 = ∅ → ∩ 𝑥 = ∩ ∅ ) |
| 34 |
|
ineq2 |
⊢ ( ∩ 𝑥 = ∩ ∅ → ( 𝑋 ∩ ∩ 𝑥 ) = ( 𝑋 ∩ ∩ ∅ ) ) |
| 35 |
|
eleq1 |
⊢ ( ( 𝑋 ∩ ∩ 𝑥 ) = ( 𝑋 ∩ ∩ ∅ ) → ( ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) ) |
| 36 |
33 34 35
|
3syl |
⊢ ( 𝑥 = ∅ → ( ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ↔ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) ) |
| 37 |
36
|
bj-raldifsn |
⊢ ( ∅ ∈ 𝒫 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ∧ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) ) ) |
| 38 |
32 37
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ∧ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐵 ) ) |
| 39 |
31 38
|
bitr4di |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∩ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑋 ∩ ∩ 𝑥 ) ∈ 𝐵 ) ) |