| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssv |  |-  X C_ _V | 
						
							| 2 |  | int0 |  |-  |^| (/) = _V | 
						
							| 3 | 1 2 | sseqtrri |  |-  X C_ |^| (/) | 
						
							| 4 |  | dfss2 |  |-  ( X C_ |^| (/) <-> ( X i^i |^| (/) ) = X ) | 
						
							| 5 | 3 4 | mpbi |  |-  ( X i^i |^| (/) ) = X | 
						
							| 6 | 5 | eqcomi |  |-  X = ( X i^i |^| (/) ) | 
						
							| 7 | 6 | eleq1i |  |-  ( X e. B <-> ( X i^i |^| (/) ) e. B ) | 
						
							| 8 | 7 | a1i |  |-  ( A C_ ~P X -> ( X e. B <-> ( X i^i |^| (/) ) e. B ) ) | 
						
							| 9 |  | eldifsn |  |-  ( x e. ( ~P A \ { (/) } ) <-> ( x e. ~P A /\ x =/= (/) ) ) | 
						
							| 10 |  | sstr2 |  |-  ( x C_ A -> ( A C_ ~P X -> x C_ ~P X ) ) | 
						
							| 11 |  | intss2 |  |-  ( x C_ ~P X -> ( x =/= (/) -> |^| x C_ X ) ) | 
						
							| 12 | 10 11 | syl6 |  |-  ( x C_ A -> ( A C_ ~P X -> ( x =/= (/) -> |^| x C_ X ) ) ) | 
						
							| 13 |  | elpwi |  |-  ( x e. ~P A -> x C_ A ) | 
						
							| 14 | 12 13 | syl11 |  |-  ( A C_ ~P X -> ( x e. ~P A -> ( x =/= (/) -> |^| x C_ X ) ) ) | 
						
							| 15 | 14 | impd |  |-  ( A C_ ~P X -> ( ( x e. ~P A /\ x =/= (/) ) -> |^| x C_ X ) ) | 
						
							| 16 | 9 15 | biimtrid |  |-  ( A C_ ~P X -> ( x e. ( ~P A \ { (/) } ) -> |^| x C_ X ) ) | 
						
							| 17 |  | dfss2 |  |-  ( |^| x C_ X <-> ( |^| x i^i X ) = |^| x ) | 
						
							| 18 |  | incom |  |-  ( |^| x i^i X ) = ( X i^i |^| x ) | 
						
							| 19 | 18 | eqeq1i |  |-  ( ( |^| x i^i X ) = |^| x <-> ( X i^i |^| x ) = |^| x ) | 
						
							| 20 |  | eqcom |  |-  ( ( X i^i |^| x ) = |^| x <-> |^| x = ( X i^i |^| x ) ) | 
						
							| 21 | 19 20 | sylbb |  |-  ( ( |^| x i^i X ) = |^| x -> |^| x = ( X i^i |^| x ) ) | 
						
							| 22 | 17 21 | sylbi |  |-  ( |^| x C_ X -> |^| x = ( X i^i |^| x ) ) | 
						
							| 23 |  | eleq1 |  |-  ( |^| x = ( X i^i |^| x ) -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) | 
						
							| 24 | 23 | a1i |  |-  ( A C_ ~P X -> ( |^| x = ( X i^i |^| x ) -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) ) | 
						
							| 25 | 22 24 | syl5 |  |-  ( A C_ ~P X -> ( |^| x C_ X -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) ) | 
						
							| 26 | 16 25 | syld |  |-  ( A C_ ~P X -> ( x e. ( ~P A \ { (/) } ) -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) ) | 
						
							| 27 | 26 | ralrimiv |  |-  ( A C_ ~P X -> A. x e. ( ~P A \ { (/) } ) ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) | 
						
							| 28 |  | ralbi |  |-  ( A. x e. ( ~P A \ { (/) } ) ( |^| x e. B <-> ( X i^i |^| x ) e. B ) -> ( A. x e. ( ~P A \ { (/) } ) |^| x e. B <-> A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( A C_ ~P X -> ( A. x e. ( ~P A \ { (/) } ) |^| x e. B <-> A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B ) ) | 
						
							| 30 | 8 29 | anbi12d |  |-  ( A C_ ~P X -> ( ( X e. B /\ A. x e. ( ~P A \ { (/) } ) |^| x e. B ) <-> ( ( X i^i |^| (/) ) e. B /\ A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B ) ) ) | 
						
							| 31 | 30 | biancomd |  |-  ( A C_ ~P X -> ( ( X e. B /\ A. x e. ( ~P A \ { (/) } ) |^| x e. B ) <-> ( A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B /\ ( X i^i |^| (/) ) e. B ) ) ) | 
						
							| 32 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 33 |  | inteq |  |-  ( x = (/) -> |^| x = |^| (/) ) | 
						
							| 34 |  | ineq2 |  |-  ( |^| x = |^| (/) -> ( X i^i |^| x ) = ( X i^i |^| (/) ) ) | 
						
							| 35 |  | eleq1 |  |-  ( ( X i^i |^| x ) = ( X i^i |^| (/) ) -> ( ( X i^i |^| x ) e. B <-> ( X i^i |^| (/) ) e. B ) ) | 
						
							| 36 | 33 34 35 | 3syl |  |-  ( x = (/) -> ( ( X i^i |^| x ) e. B <-> ( X i^i |^| (/) ) e. B ) ) | 
						
							| 37 | 36 | bj-raldifsn |  |-  ( (/) e. ~P A -> ( A. x e. ~P A ( X i^i |^| x ) e. B <-> ( A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B /\ ( X i^i |^| (/) ) e. B ) ) ) | 
						
							| 38 | 32 37 | ax-mp |  |-  ( A. x e. ~P A ( X i^i |^| x ) e. B <-> ( A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B /\ ( X i^i |^| (/) ) e. B ) ) | 
						
							| 39 | 31 38 | bitr4di |  |-  ( A C_ ~P X -> ( ( X e. B /\ A. x e. ( ~P A \ { (/) } ) |^| x e. B ) <-> A. x e. ~P A ( X i^i |^| x ) e. B ) ) |