Step |
Hyp |
Ref |
Expression |
1 |
|
ssv |
|- X C_ _V |
2 |
|
int0 |
|- |^| (/) = _V |
3 |
1 2
|
sseqtrri |
|- X C_ |^| (/) |
4 |
|
df-ss |
|- ( X C_ |^| (/) <-> ( X i^i |^| (/) ) = X ) |
5 |
3 4
|
mpbi |
|- ( X i^i |^| (/) ) = X |
6 |
5
|
eqcomi |
|- X = ( X i^i |^| (/) ) |
7 |
6
|
eleq1i |
|- ( X e. B <-> ( X i^i |^| (/) ) e. B ) |
8 |
7
|
a1i |
|- ( A C_ ~P X -> ( X e. B <-> ( X i^i |^| (/) ) e. B ) ) |
9 |
|
eldifsn |
|- ( x e. ( ~P A \ { (/) } ) <-> ( x e. ~P A /\ x =/= (/) ) ) |
10 |
|
sstr2 |
|- ( x C_ A -> ( A C_ ~P X -> x C_ ~P X ) ) |
11 |
|
intss2 |
|- ( x C_ ~P X -> ( x =/= (/) -> |^| x C_ X ) ) |
12 |
10 11
|
syl6 |
|- ( x C_ A -> ( A C_ ~P X -> ( x =/= (/) -> |^| x C_ X ) ) ) |
13 |
|
elpwi |
|- ( x e. ~P A -> x C_ A ) |
14 |
12 13
|
syl11 |
|- ( A C_ ~P X -> ( x e. ~P A -> ( x =/= (/) -> |^| x C_ X ) ) ) |
15 |
14
|
impd |
|- ( A C_ ~P X -> ( ( x e. ~P A /\ x =/= (/) ) -> |^| x C_ X ) ) |
16 |
9 15
|
syl5bi |
|- ( A C_ ~P X -> ( x e. ( ~P A \ { (/) } ) -> |^| x C_ X ) ) |
17 |
|
df-ss |
|- ( |^| x C_ X <-> ( |^| x i^i X ) = |^| x ) |
18 |
|
incom |
|- ( |^| x i^i X ) = ( X i^i |^| x ) |
19 |
18
|
eqeq1i |
|- ( ( |^| x i^i X ) = |^| x <-> ( X i^i |^| x ) = |^| x ) |
20 |
|
eqcom |
|- ( ( X i^i |^| x ) = |^| x <-> |^| x = ( X i^i |^| x ) ) |
21 |
19 20
|
sylbb |
|- ( ( |^| x i^i X ) = |^| x -> |^| x = ( X i^i |^| x ) ) |
22 |
17 21
|
sylbi |
|- ( |^| x C_ X -> |^| x = ( X i^i |^| x ) ) |
23 |
|
eleq1 |
|- ( |^| x = ( X i^i |^| x ) -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) |
24 |
23
|
a1i |
|- ( A C_ ~P X -> ( |^| x = ( X i^i |^| x ) -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) ) |
25 |
22 24
|
syl5 |
|- ( A C_ ~P X -> ( |^| x C_ X -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) ) |
26 |
16 25
|
syld |
|- ( A C_ ~P X -> ( x e. ( ~P A \ { (/) } ) -> ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) ) |
27 |
26
|
ralrimiv |
|- ( A C_ ~P X -> A. x e. ( ~P A \ { (/) } ) ( |^| x e. B <-> ( X i^i |^| x ) e. B ) ) |
28 |
|
ralbi |
|- ( A. x e. ( ~P A \ { (/) } ) ( |^| x e. B <-> ( X i^i |^| x ) e. B ) -> ( A. x e. ( ~P A \ { (/) } ) |^| x e. B <-> A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B ) ) |
29 |
27 28
|
syl |
|- ( A C_ ~P X -> ( A. x e. ( ~P A \ { (/) } ) |^| x e. B <-> A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B ) ) |
30 |
8 29
|
anbi12d |
|- ( A C_ ~P X -> ( ( X e. B /\ A. x e. ( ~P A \ { (/) } ) |^| x e. B ) <-> ( ( X i^i |^| (/) ) e. B /\ A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B ) ) ) |
31 |
30
|
biancomd |
|- ( A C_ ~P X -> ( ( X e. B /\ A. x e. ( ~P A \ { (/) } ) |^| x e. B ) <-> ( A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B /\ ( X i^i |^| (/) ) e. B ) ) ) |
32 |
|
0elpw |
|- (/) e. ~P A |
33 |
|
inteq |
|- ( x = (/) -> |^| x = |^| (/) ) |
34 |
|
ineq2 |
|- ( |^| x = |^| (/) -> ( X i^i |^| x ) = ( X i^i |^| (/) ) ) |
35 |
|
eleq1 |
|- ( ( X i^i |^| x ) = ( X i^i |^| (/) ) -> ( ( X i^i |^| x ) e. B <-> ( X i^i |^| (/) ) e. B ) ) |
36 |
33 34 35
|
3syl |
|- ( x = (/) -> ( ( X i^i |^| x ) e. B <-> ( X i^i |^| (/) ) e. B ) ) |
37 |
36
|
bj-raldifsn |
|- ( (/) e. ~P A -> ( A. x e. ~P A ( X i^i |^| x ) e. B <-> ( A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B /\ ( X i^i |^| (/) ) e. B ) ) ) |
38 |
32 37
|
ax-mp |
|- ( A. x e. ~P A ( X i^i |^| x ) e. B <-> ( A. x e. ( ~P A \ { (/) } ) ( X i^i |^| x ) e. B /\ ( X i^i |^| (/) ) e. B ) ) |
39 |
31 38
|
bitr4di |
|- ( A C_ ~P X -> ( ( X e. B /\ A. x e. ( ~P A \ { (/) } ) |^| x e. B ) <-> A. x e. ~P A ( X i^i |^| x ) e. B ) ) |