| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1049.1 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 2 |
|
bnj1049.2 |
⊢ ( 𝜂 ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
| 3 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ 𝑛 𝜂 ↔ ∀ 𝑖 ( 𝑖 ∈ 𝑛 → 𝜂 ) ) |
| 4 |
2
|
imbi2i |
⊢ ( ( 𝑖 ∈ 𝑛 → 𝜂 ) ↔ ( 𝑖 ∈ 𝑛 → ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 5 |
|
impexp |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ) → 𝑧 ∈ 𝐵 ) ↔ ( 𝑖 ∈ 𝑛 → ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 6 |
4 5
|
bitr4i |
⊢ ( ( 𝑖 ∈ 𝑛 → 𝜂 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ) → 𝑧 ∈ 𝐵 ) ) |
| 7 |
1
|
simplbi |
⊢ ( 𝜁 → 𝑖 ∈ 𝑛 ) |
| 8 |
7
|
bnj708 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑖 ∈ 𝑛 ) |
| 9 |
8
|
pm4.71ri |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ↔ ( 𝑖 ∈ 𝑛 ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ) ) |
| 10 |
9
|
bicomi |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ) |
| 11 |
10
|
imbi1i |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ) → 𝑧 ∈ 𝐵 ) ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
| 12 |
6 11
|
bitri |
⊢ ( ( 𝑖 ∈ 𝑛 → 𝜂 ) ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
| 13 |
12 2
|
bitr4i |
⊢ ( ( 𝑖 ∈ 𝑛 → 𝜂 ) ↔ 𝜂 ) |
| 14 |
13
|
albii |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ 𝑛 → 𝜂 ) ↔ ∀ 𝑖 𝜂 ) |
| 15 |
3 14
|
bitri |
⊢ ( ∀ 𝑖 ∈ 𝑛 𝜂 ↔ ∀ 𝑖 𝜂 ) |