| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1176.51 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V ) ) |
| 2 |
|
bnj1176.52 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ¬ 𝑤 𝑅 𝑧 ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ¬ 𝑤 𝑅 𝑧 ) |
| 4 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝐶 ¬ 𝑤 𝑅 𝑧 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) |
| 5 |
4
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ¬ 𝑤 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐶 ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) |
| 6 |
3 5
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) |
| 7 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 9 |
|
19.28v |
⊢ ( ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 10 |
9
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 11 |
8 10
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 12 |
|
19.37v |
⊢ ( ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
| 13 |
11 12
|
mpbir |
⊢ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 14 |
|
19.21v |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
| 16 |
13 15
|
mpbir |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 17 |
|
con2b |
⊢ ( ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) |
| 18 |
17
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) |
| 19 |
18
|
imbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) |
| 20 |
19
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) |
| 21 |
20
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 ∈ 𝐶 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) |
| 22 |
16 21
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) |
| 23 |
|
ax-1 |
⊢ ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) |
| 24 |
23
|
anim2i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) |
| 25 |
24
|
imim2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) ) |
| 26 |
25
|
alimi |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) → ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) ) |
| 27 |
22 26
|
bnj101 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) |