| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1177.2 |
⊢ ( 𝜓 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝑅 𝑋 ) ) |
| 2 |
|
bnj1177.3 |
⊢ 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) |
| 3 |
|
bnj1177.9 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 FrSe 𝐴 ) |
| 4 |
|
bnj1177.13 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ⊆ 𝐴 ) |
| 5 |
|
bnj1177.17 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ 𝐴 ) |
| 6 |
|
df-bnj15 |
⊢ ( 𝑅 FrSe 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| 7 |
6
|
simplbi |
⊢ ( 𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴 ) |
| 8 |
3 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 Fr 𝐴 ) |
| 9 |
|
bnj1147 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 10 |
|
ssinss1 |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 → ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ 𝐴 ) |
| 11 |
9 10
|
ax-mp |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ 𝐴 |
| 12 |
2 11
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ⊆ 𝐴 ) |
| 14 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 15 |
3 5 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 16 |
15
|
ssrind |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
| 17 |
1
|
simp2bi |
⊢ ( 𝜓 → 𝑦 ∈ 𝐵 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ 𝐵 ) |
| 19 |
4 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ 𝐴 ) |
| 20 |
1
|
simp3bi |
⊢ ( 𝜓 → 𝑦 𝑅 𝑋 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 𝑅 𝑋 ) |
| 22 |
|
bnj1152 |
⊢ ( 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) |
| 23 |
19 21 22
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 24 |
23 18
|
elind |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
| 25 |
16 24
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
| 26 |
25
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ≠ ∅ ) |
| 27 |
2
|
neeq1i |
⊢ ( 𝐶 ≠ ∅ ↔ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ≠ ∅ ) |
| 28 |
26 27
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ≠ ∅ ) |
| 29 |
|
bnj893 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
| 30 |
3 5 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
| 31 |
|
inex1g |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V → ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ∈ V ) |
| 32 |
2 31
|
eqeltrid |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V → 𝐶 ∈ V ) |
| 33 |
30 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ V ) |
| 34 |
8 13 28 33
|
bnj951 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V ) ) |