Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1177.2 |
|- ( ps <-> ( X e. B /\ y e. B /\ y R X ) ) |
2 |
|
bnj1177.3 |
|- C = ( _trCl ( X , A , R ) i^i B ) |
3 |
|
bnj1177.9 |
|- ( ( ph /\ ps ) -> R _FrSe A ) |
4 |
|
bnj1177.13 |
|- ( ( ph /\ ps ) -> B C_ A ) |
5 |
|
bnj1177.17 |
|- ( ( ph /\ ps ) -> X e. A ) |
6 |
|
df-bnj15 |
|- ( R _FrSe A <-> ( R Fr A /\ R _Se A ) ) |
7 |
6
|
simplbi |
|- ( R _FrSe A -> R Fr A ) |
8 |
3 7
|
syl |
|- ( ( ph /\ ps ) -> R Fr A ) |
9 |
|
bnj1147 |
|- _trCl ( X , A , R ) C_ A |
10 |
|
ssinss1 |
|- ( _trCl ( X , A , R ) C_ A -> ( _trCl ( X , A , R ) i^i B ) C_ A ) |
11 |
9 10
|
ax-mp |
|- ( _trCl ( X , A , R ) i^i B ) C_ A |
12 |
2 11
|
eqsstri |
|- C C_ A |
13 |
12
|
a1i |
|- ( ( ph /\ ps ) -> C C_ A ) |
14 |
|
bnj906 |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
15 |
3 5 14
|
syl2anc |
|- ( ( ph /\ ps ) -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
16 |
15
|
ssrind |
|- ( ( ph /\ ps ) -> ( _pred ( X , A , R ) i^i B ) C_ ( _trCl ( X , A , R ) i^i B ) ) |
17 |
1
|
simp2bi |
|- ( ps -> y e. B ) |
18 |
17
|
adantl |
|- ( ( ph /\ ps ) -> y e. B ) |
19 |
4 18
|
sseldd |
|- ( ( ph /\ ps ) -> y e. A ) |
20 |
1
|
simp3bi |
|- ( ps -> y R X ) |
21 |
20
|
adantl |
|- ( ( ph /\ ps ) -> y R X ) |
22 |
|
bnj1152 |
|- ( y e. _pred ( X , A , R ) <-> ( y e. A /\ y R X ) ) |
23 |
19 21 22
|
sylanbrc |
|- ( ( ph /\ ps ) -> y e. _pred ( X , A , R ) ) |
24 |
23 18
|
elind |
|- ( ( ph /\ ps ) -> y e. ( _pred ( X , A , R ) i^i B ) ) |
25 |
16 24
|
sseldd |
|- ( ( ph /\ ps ) -> y e. ( _trCl ( X , A , R ) i^i B ) ) |
26 |
25
|
ne0d |
|- ( ( ph /\ ps ) -> ( _trCl ( X , A , R ) i^i B ) =/= (/) ) |
27 |
2
|
neeq1i |
|- ( C =/= (/) <-> ( _trCl ( X , A , R ) i^i B ) =/= (/) ) |
28 |
26 27
|
sylibr |
|- ( ( ph /\ ps ) -> C =/= (/) ) |
29 |
|
bnj893 |
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) e. _V ) |
30 |
3 5 29
|
syl2anc |
|- ( ( ph /\ ps ) -> _trCl ( X , A , R ) e. _V ) |
31 |
|
inex1g |
|- ( _trCl ( X , A , R ) e. _V -> ( _trCl ( X , A , R ) i^i B ) e. _V ) |
32 |
2 31
|
eqeltrid |
|- ( _trCl ( X , A , R ) e. _V -> C e. _V ) |
33 |
30 32
|
syl |
|- ( ( ph /\ ps ) -> C e. _V ) |
34 |
8 13 28 33
|
bnj951 |
|- ( ( ph /\ ps ) -> ( R Fr A /\ C C_ A /\ C =/= (/) /\ C e. _V ) ) |