| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1186.1 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 2 |
|
19.21v |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
| 3 |
2
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
| 4 |
1 3
|
mpbi |
⊢ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 5 |
4
|
19.37iv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 6 |
|
19.28v |
⊢ ( ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 8 |
5 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 9 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) |
| 10 |
9
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 11 |
10
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 12 |
8 11
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ) |
| 13 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) |