Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1186.1 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
2 |
|
19.21v |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
3 |
2
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
4 |
1 3
|
mpbi |
⊢ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
5 |
4
|
19.37iv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
6 |
|
19.28v |
⊢ ( ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
8 |
5 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
9 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) |
10 |
9
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
12 |
8 11
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ) |
13 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 𝑅 𝑧 ) |