Metamath Proof Explorer


Theorem bnj1190

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1190.1 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅ ) )
bnj1190.2 ( 𝜓 ↔ ( 𝑥𝐵𝑦𝐵𝑦 𝑅 𝑥 ) )
Assertion bnj1190 ( ( 𝜑𝜓 ) → ∃ 𝑤𝐵𝑧𝐵 ¬ 𝑧 𝑅 𝑤 )

Proof

Step Hyp Ref Expression
1 bnj1190.1 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅ ) )
2 bnj1190.2 ( 𝜓 ↔ ( 𝑥𝐵𝑦𝐵𝑦 𝑅 𝑥 ) )
3 1 simp2bi ( 𝜑𝐵𝐴 )
4 3 adantr ( ( 𝜑𝜓 ) → 𝐵𝐴 )
5 eqid ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) = ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 )
6 1 simp1bi ( 𝜑𝑅 FrSe 𝐴 )
7 6 adantr ( ( 𝜑𝜓 ) → 𝑅 FrSe 𝐴 )
8 2 simp1bi ( 𝜓𝑥𝐵 )
9 ssel2 ( ( 𝐵𝐴𝑥𝐵 ) → 𝑥𝐴 )
10 3 8 9 syl2an ( ( 𝜑𝜓 ) → 𝑥𝐴 )
11 2 5 7 4 10 bnj1177 ( ( 𝜑𝜓 ) → ( 𝑅 Fr 𝐴 ∧ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ 𝐴 ∧ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ≠ ∅ ∧ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ∈ V ) )
12 bnj1154 ( ( 𝑅 Fr 𝐴 ∧ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ 𝐴 ∧ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ≠ ∅ ∧ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ∈ V ) → ∃ 𝑢 ∈ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ∀ 𝑣 ∈ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ¬ 𝑣 𝑅 𝑢 )
13 11 12 bnj1176 𝑢𝑣 ( ( 𝜑𝜓 ) → ( 𝑢 ∈ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ∧ ( ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ 𝑣𝐴 ) → ( 𝑣 𝑅 𝑢 → ¬ 𝑣 ∈ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) ) ) )
14 biid ( ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ ( 𝑣𝐴𝑣 𝑅 𝑢 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ ( 𝑣𝐴𝑣 𝑅 𝑢 ) ) )
15 biid ( ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ 𝑣𝐴 ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ 𝑣𝐴 ) )
16 5 14 15 bnj1175 ( ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ 𝑣𝐴 ) → ( 𝑣 𝑅 𝑢𝑣 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
17 5 13 16 bnj1174 𝑢𝑣 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜓𝑢 ∈ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) ∧ ( ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ 𝑣𝐴 ) → ( 𝑣 𝑅 𝑢 → ¬ 𝑣𝐵 ) ) ) )
18 5 15 7 10 bnj1173 ( ( 𝜑𝜓𝑢 ∈ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) → ( ( ( 𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑢𝐴 ) ∧ 𝑣𝐴 ) ↔ 𝑣𝐴 ) )
19 5 17 18 bnj1172 𝑢𝑣 ( ( 𝜑𝜓 ) → ( 𝑢𝐵 ∧ ( 𝑣𝐴 → ( 𝑣 𝑅 𝑢 → ¬ 𝑣𝐵 ) ) ) )
20 4 19 bnj1171 𝑢𝑣 ( ( 𝜑𝜓 ) → ( 𝑢𝐵 ∧ ( 𝑣𝐵 → ¬ 𝑣 𝑅 𝑢 ) ) )
21 20 bnj1186 ( ( 𝜑𝜓 ) → ∃ 𝑢𝐵𝑣𝐵 ¬ 𝑣 𝑅 𝑢 )
22 21 bnj1185 ( ( 𝜑𝜓 ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
23 22 bnj1185 ( ( 𝜑𝜓 ) → ∃ 𝑤𝐵𝑧𝐵 ¬ 𝑧 𝑅 𝑤 )