Metamath Proof Explorer


Theorem bnj1190

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1190.1 φ R FrSe A B A B
bnj1190.2 ψ x B y B y R x
Assertion bnj1190 φ ψ w B z B ¬ z R w

Proof

Step Hyp Ref Expression
1 bnj1190.1 φ R FrSe A B A B
2 bnj1190.2 ψ x B y B y R x
3 1 simp2bi φ B A
4 3 adantr φ ψ B A
5 eqid trCl x A R B = trCl x A R B
6 1 simp1bi φ R FrSe A
7 6 adantr φ ψ R FrSe A
8 2 simp1bi ψ x B
9 ssel2 B A x B x A
10 3 8 9 syl2an φ ψ x A
11 2 5 7 4 10 bnj1177 φ ψ R Fr A trCl x A R B A trCl x A R B trCl x A R B V
12 bnj1154 R Fr A trCl x A R B A trCl x A R B trCl x A R B V u trCl x A R B v trCl x A R B ¬ v R u
13 11 12 bnj1176 u v φ ψ u trCl x A R B R FrSe A x A u trCl x A R R FrSe A u A v A v R u ¬ v trCl x A R B
14 biid R FrSe A x A u trCl x A R R FrSe A u A v A v R u R FrSe A x A u trCl x A R R FrSe A u A v A v R u
15 biid R FrSe A x A u trCl x A R R FrSe A u A v A R FrSe A x A u trCl x A R R FrSe A u A v A
16 5 14 15 bnj1175 R FrSe A x A u trCl x A R R FrSe A u A v A v R u v trCl x A R
17 5 13 16 bnj1174 u v φ ψ φ ψ u trCl x A R B R FrSe A x A u trCl x A R R FrSe A u A v A v R u ¬ v B
18 5 15 7 10 bnj1173 φ ψ u trCl x A R B R FrSe A x A u trCl x A R R FrSe A u A v A v A
19 5 17 18 bnj1172 u v φ ψ u B v A v R u ¬ v B
20 4 19 bnj1171 u v φ ψ u B v B ¬ v R u
21 20 bnj1186 φ ψ u B v B ¬ v R u
22 21 bnj1185 φ ψ x B y B ¬ y R x
23 22 bnj1185 φ ψ w B z B ¬ z R w