Metamath Proof Explorer


Theorem bnj1175

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1175.3 C=trClXARB
bnj1175.4 χRFrSeAXAztrClXARRFrSeAzAwAwRz
bnj1175.5 θRFrSeAXAztrClXARRFrSeAzAwA
Assertion bnj1175 θwRzwtrClXAR

Proof

Step Hyp Ref Expression
1 bnj1175.3 C=trClXARB
2 bnj1175.4 χRFrSeAXAztrClXARRFrSeAzAwAwRz
3 bnj1175.5 θRFrSeAXAztrClXARRFrSeAzAwA
4 bnj255 RFrSeAXAztrClXARRFrSeAzAwAwRzRFrSeAXAztrClXARRFrSeAzAwAwRz
5 df-bnj17 RFrSeAXAztrClXARRFrSeAzAwAwRzRFrSeAXAztrClXARRFrSeAzAwAwRz
6 2 4 5 3bitr2i χRFrSeAXAztrClXARRFrSeAzAwAwRz
7 3 anbi1i θwRzRFrSeAXAztrClXARRFrSeAzAwAwRz
8 6 7 bitr4i χθwRz
9 bnj1125 RFrSeAXAztrClXARtrClzARtrClXAR
10 2 9 bnj835 χtrClzARtrClXAR
11 bnj906 RFrSeAzApredzARtrClzAR
12 2 11 bnj836 χpredzARtrClzAR
13 bnj1152 wpredzARwAwRz
14 13 biimpri wAwRzwpredzAR
15 2 14 bnj837 χwpredzAR
16 12 15 sseldd χwtrClzAR
17 10 16 sseldd χwtrClXAR
18 8 17 sylbir θwRzwtrClXAR
19 18 ex θwRzwtrClXAR