Metamath Proof Explorer


Theorem bnj1189

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1189.1 φRFrSeABAB
bnj1189.2 ψxByByRx
bnj1189.3 χyB¬yRx
Assertion bnj1189 φxByB¬yRx

Proof

Step Hyp Ref Expression
1 bnj1189.1 φRFrSeABAB
2 bnj1189.2 ψxByByRx
3 bnj1189.3 χyB¬yRx
4 n0 BxxB
5 4 biimpi BxxB
6 1 5 bnj837 φxxB
7 6 ancli φφxxB
8 19.42v xφxBφxxB
9 7 8 sylibr φxφxB
10 3simpc φxBχxBχ
11 3 anbi2i xBχxByB¬yRx
12 10 11 sylib φxBχxByB¬yRx
13 12 19.8ad φxBχxxByB¬yRx
14 df-rex xByB¬yRxxxByB¬yRx
15 13 14 sylibr φxBχxByB¬yRx
16 15 3comr χφxBxByB¬yRx
17 16 3expib χφxBxByB¬yRx
18 simp1 φxB¬χφ
19 simp2 φxB¬χxB
20 rexnal yB¬¬yRx¬yB¬yRx
21 20 bicomi ¬yB¬yRxyB¬¬yRx
22 21 3 xchnxbir ¬χyB¬¬yRx
23 notnotb yRx¬¬yRx
24 23 rexbii yByRxyB¬¬yRx
25 22 24 bitr4i ¬χyByRx
26 25 biimpi ¬χyByRx
27 26 bnj1196 ¬χyyByRx
28 27 3ad2ant3 φxB¬χyyByRx
29 3anass xByByRxxByByRx
30 29 exbii yxByByRxyxByByRx
31 19.42v yxByByRxxByyByRx
32 30 31 bitri yxByByRxxByyByRx
33 19 28 32 sylanbrc φxB¬χyxByByRx
34 33 2 bnj1198 φxB¬χyψ
35 19.42v yφψφyψ
36 18 34 35 sylanbrc φxB¬χyφψ
37 1 2 bnj1190 φψwBzB¬zRw
38 36 37 bnj593 φxB¬χywBzB¬zRw
39 38 bnj937 φxB¬χwBzB¬zRw
40 39 bnj1185 φxB¬χxByB¬yRx
41 40 3comr ¬χφxBxByB¬yRx
42 41 3expib ¬χφxBxByB¬yRx
43 17 42 pm2.61i φxBxByB¬yRx
44 9 43 bnj593 φxxByB¬yRx
45 nfre1 xxByB¬yRx
46 45 19.9 xxByB¬yRxxByB¬yRx
47 44 46 sylib φxByB¬yRx