Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1189.1 | |
|
bnj1189.2 | |
||
bnj1189.3 | |
||
Assertion | bnj1189 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1189.1 | |
|
2 | bnj1189.2 | |
|
3 | bnj1189.3 | |
|
4 | n0 | |
|
5 | 4 | biimpi | |
6 | 1 5 | bnj837 | |
7 | 6 | ancli | |
8 | 19.42v | |
|
9 | 7 8 | sylibr | |
10 | 3simpc | |
|
11 | 3 | anbi2i | |
12 | 10 11 | sylib | |
13 | 12 | 19.8ad | |
14 | df-rex | |
|
15 | 13 14 | sylibr | |
16 | 15 | 3comr | |
17 | 16 | 3expib | |
18 | simp1 | |
|
19 | simp2 | |
|
20 | rexnal | |
|
21 | 20 | bicomi | |
22 | 21 3 | xchnxbir | |
23 | notnotb | |
|
24 | 23 | rexbii | |
25 | 22 24 | bitr4i | |
26 | 25 | biimpi | |
27 | 26 | bnj1196 | |
28 | 27 | 3ad2ant3 | |
29 | 3anass | |
|
30 | 29 | exbii | |
31 | 19.42v | |
|
32 | 30 31 | bitri | |
33 | 19 28 32 | sylanbrc | |
34 | 33 2 | bnj1198 | |
35 | 19.42v | |
|
36 | 18 34 35 | sylanbrc | |
37 | 1 2 | bnj1190 | |
38 | 36 37 | bnj593 | |
39 | 38 | bnj937 | |
40 | 39 | bnj1185 | |
41 | 40 | 3comr | |
42 | 41 | 3expib | |
43 | 17 42 | pm2.61i | |
44 | 9 43 | bnj593 | |
45 | nfre1 | |
|
46 | 45 | 19.9 | |
47 | 44 46 | sylib | |