| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj23.1 |
⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } |
| 2 |
|
sbcng |
⊢ ( 𝑤 ∈ V → ( [ 𝑤 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 3 |
2
|
elv |
⊢ ( [ 𝑤 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑤 / 𝑥 ] 𝜑 ) |
| 4 |
1
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 6 |
5
|
elrabsf |
⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] ¬ 𝜑 ) ) |
| 7 |
4 6
|
bitri |
⊢ ( 𝑤 ∈ 𝐵 ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] ¬ 𝜑 ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝑅 𝑦 ↔ 𝑤 𝑅 𝑦 ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑧 = 𝑤 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑤 𝑅 𝑦 ) ) |
| 10 |
9
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑦 → ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑦 ) ) |
| 11 |
7 10
|
biimtrrid |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑦 → ( ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] ¬ 𝜑 ) → ¬ 𝑤 𝑅 𝑦 ) ) |
| 12 |
11
|
expdimp |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑦 ∧ 𝑤 ∈ 𝐴 ) → ( [ 𝑤 / 𝑥 ] ¬ 𝜑 → ¬ 𝑤 𝑅 𝑦 ) ) |
| 13 |
3 12
|
biimtrrid |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑦 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ [ 𝑤 / 𝑥 ] 𝜑 → ¬ 𝑤 𝑅 𝑦 ) ) |
| 14 |
13
|
con4d |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑦 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 𝑅 𝑦 → [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑦 → ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑦 → [ 𝑤 / 𝑥 ] 𝜑 ) ) |