Metamath Proof Explorer


Theorem bnj23

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypothesis bnj23.1 𝐵 = { 𝑥𝐴 ∣ ¬ 𝜑 }
Assertion bnj23 ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦 → ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑦[ 𝑤 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bnj23.1 𝐵 = { 𝑥𝐴 ∣ ¬ 𝜑 }
2 sbcng ( 𝑤 ∈ V → ( [ 𝑤 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑤 / 𝑥 ] 𝜑 ) )
3 2 elv ( [ 𝑤 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑤 / 𝑥 ] 𝜑 )
4 1 eleq2i ( 𝑤𝐵𝑤 ∈ { 𝑥𝐴 ∣ ¬ 𝜑 } )
5 nfcv 𝑥 𝐴
6 5 elrabsf ( 𝑤 ∈ { 𝑥𝐴 ∣ ¬ 𝜑 } ↔ ( 𝑤𝐴[ 𝑤 / 𝑥 ] ¬ 𝜑 ) )
7 4 6 bitri ( 𝑤𝐵 ↔ ( 𝑤𝐴[ 𝑤 / 𝑥 ] ¬ 𝜑 ) )
8 breq1 ( 𝑧 = 𝑤 → ( 𝑧 𝑅 𝑦𝑤 𝑅 𝑦 ) )
9 8 notbid ( 𝑧 = 𝑤 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑤 𝑅 𝑦 ) )
10 9 rspccv ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦 → ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑦 ) )
11 7 10 syl5bir ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦 → ( ( 𝑤𝐴[ 𝑤 / 𝑥 ] ¬ 𝜑 ) → ¬ 𝑤 𝑅 𝑦 ) )
12 11 expdimp ( ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦𝑤𝐴 ) → ( [ 𝑤 / 𝑥 ] ¬ 𝜑 → ¬ 𝑤 𝑅 𝑦 ) )
13 3 12 syl5bir ( ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦𝑤𝐴 ) → ( ¬ [ 𝑤 / 𝑥 ] 𝜑 → ¬ 𝑤 𝑅 𝑦 ) )
14 13 con4d ( ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦𝑤𝐴 ) → ( 𝑤 𝑅 𝑦[ 𝑤 / 𝑥 ] 𝜑 ) )
15 14 ralrimiva ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝑦 → ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑦[ 𝑤 / 𝑥 ] 𝜑 ) )