Metamath Proof Explorer


Theorem bnj23

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypothesis bnj23.1 B = x A | ¬ φ
Assertion bnj23 z B ¬ z R y w A w R y [˙w / x]˙ φ

Proof

Step Hyp Ref Expression
1 bnj23.1 B = x A | ¬ φ
2 sbcng w V [˙w / x]˙ ¬ φ ¬ [˙w / x]˙ φ
3 2 elv [˙w / x]˙ ¬ φ ¬ [˙w / x]˙ φ
4 1 eleq2i w B w x A | ¬ φ
5 nfcv _ x A
6 5 elrabsf w x A | ¬ φ w A [˙w / x]˙ ¬ φ
7 4 6 bitri w B w A [˙w / x]˙ ¬ φ
8 breq1 z = w z R y w R y
9 8 notbid z = w ¬ z R y ¬ w R y
10 9 rspccv z B ¬ z R y w B ¬ w R y
11 7 10 syl5bir z B ¬ z R y w A [˙w / x]˙ ¬ φ ¬ w R y
12 11 expdimp z B ¬ z R y w A [˙w / x]˙ ¬ φ ¬ w R y
13 3 12 syl5bir z B ¬ z R y w A ¬ [˙w / x]˙ φ ¬ w R y
14 13 con4d z B ¬ z R y w A w R y [˙w / x]˙ φ
15 14 ralrimiva z B ¬ z R y w A w R y [˙w / x]˙ φ