Step |
Hyp |
Ref |
Expression |
1 |
|
bnj535.1 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj535.2 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj535.3 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
4 |
|
bnj535.4 |
⊢ ( 𝜏 ↔ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) |
5 |
|
bnj422 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ↔ ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) |
6 |
|
bnj251 |
⊢ ( ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ∧ 𝑅 FrSe 𝐴 ∧ 𝜏 ) ↔ ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ ( 𝑓 Fn 𝑚 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ↔ ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ ( 𝑓 Fn 𝑚 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) ) ) |
8 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑝 ) ∈ V |
9 |
1 2 4
|
bnj518 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
10 |
|
iunexg |
⊢ ( ( ( 𝑓 ‘ 𝑝 ) ∈ V ∧ ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
11 |
8 9 10
|
sylancr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
12 |
|
vex |
⊢ 𝑚 ∈ V |
13 |
12
|
bnj519 |
⊢ ( ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V → Fun { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
14 |
11 13
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) → Fun { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
15 |
|
dmsnopg |
⊢ ( ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V → dom { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } = { 𝑚 } ) |
16 |
11 15
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) → dom { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } = { 𝑚 } ) |
17 |
14 16
|
bnj1422 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) → { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } Fn { 𝑚 } ) |
18 |
|
bnj521 |
⊢ ( 𝑚 ∩ { 𝑚 } ) = ∅ |
19 |
|
fnun |
⊢ ( ( ( 𝑓 Fn 𝑚 ∧ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } Fn { 𝑚 } ) ∧ ( 𝑚 ∩ { 𝑚 } ) = ∅ ) → ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) Fn ( 𝑚 ∪ { 𝑚 } ) ) |
20 |
18 19
|
mpan2 |
⊢ ( ( 𝑓 Fn 𝑚 ∧ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } Fn { 𝑚 } ) → ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) Fn ( 𝑚 ∪ { 𝑚 } ) ) |
21 |
17 20
|
sylan2 |
⊢ ( ( 𝑓 Fn 𝑚 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) → ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) Fn ( 𝑚 ∪ { 𝑚 } ) ) |
22 |
3
|
fneq1i |
⊢ ( 𝐺 Fn ( 𝑚 ∪ { 𝑚 } ) ↔ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) Fn ( 𝑚 ∪ { 𝑚 } ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝑓 Fn 𝑚 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) → 𝐺 Fn ( 𝑚 ∪ { 𝑚 } ) ) |
24 |
|
fneq2 |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) → ( 𝐺 Fn 𝑛 ↔ 𝐺 Fn ( 𝑚 ∪ { 𝑚 } ) ) ) |
25 |
23 24
|
syl5ibr |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) → ( ( 𝑓 Fn 𝑚 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) → 𝐺 Fn 𝑛 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ ( 𝑓 Fn 𝑚 ∧ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ) ) → 𝐺 Fn 𝑛 ) |
27 |
7 26
|
sylbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) → 𝐺 Fn 𝑛 ) |