| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj611.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 2 |
|
bnj611.2 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓 ) |
| 3 |
|
bnj611.3 |
⊢ 𝐺 ∈ V |
| 4 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 5 |
4
|
bicomi |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 6 |
5
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑓 𝑖 ∈ ω |
| 8 |
7
|
sbc19.21g |
⊢ ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
| 9 |
3 8
|
ax-mp |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑓 suc 𝑖 ∈ 𝑁 |
| 11 |
10
|
sbc19.21g |
⊢ ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 12 |
3 11
|
ax-mp |
⊢ ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 13 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
| 14 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 15 |
14
|
bnj1113 |
⊢ ( 𝑓 = 𝐺 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 17 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑒 ‘ suc 𝑖 ) ) |
| 18 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
| 19 |
18
|
bnj1113 |
⊢ ( 𝑓 = 𝑒 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( 𝑓 = 𝑒 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 21 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
| 22 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 23 |
22
|
bnj1113 |
⊢ ( 𝑒 = 𝐺 → ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 24 |
21 23
|
eqeq12d |
⊢ ( 𝑒 = 𝐺 → ( ( 𝑒 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 25 |
3 16 20 24
|
bnj610 |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 26 |
25
|
imbi2i |
⊢ ( ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 27 |
12 26
|
bitri |
⊢ ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 28 |
27
|
imbi2i |
⊢ ( ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 29 |
9 28
|
bitri |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 30 |
29
|
albii |
⊢ ( ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 31 |
|
sbcal |
⊢ ( [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 32 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 33 |
30 31 32
|
3bitr4ri |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 34 |
1
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] 𝜓 ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 35 |
6 33 34
|
3bitr4ri |
⊢ ( [ 𝐺 / 𝑓 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 36 |
2 35
|
bitri |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |