Metamath Proof Explorer


Theorem bnj917

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj917.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj917.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj917.3 𝐷 = ( ω ∖ { ∅ } )
bnj917.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj917.5 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
Assertion bnj917 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )

Proof

Step Hyp Ref Expression
1 bnj917.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj917.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj917.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj917.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
5 bnj917.5 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
6 biid ( ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
7 1 2 3 4 6 bnj916 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
8 bnj252 ( ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) ↔ ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
9 5 8 bitri ( 𝜒 ↔ ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
10 9 3anbi1i ( ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
11 bnj253 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
12 10 11 bitr4i ( ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
13 12 3exbii ( ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑓𝑛𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
14 7 13 sylibr ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )