| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj916.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj916.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj916.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 4 |
|
bnj916.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
| 5 |
|
bnj916.5 |
⊢ ( 𝜒 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 6 |
|
bnj256 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 7 |
6
|
2exbii |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑛 ∃ 𝑖 ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 8 |
|
19.41v |
⊢ ( ∃ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑖 𝑛 ∈ 𝐷 |
| 10 |
1 2
|
bnj911 |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∀ 𝑖 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 11 |
10
|
nf5i |
⊢ Ⅎ 𝑖 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
| 12 |
9 11
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 13 |
12
|
19.42 |
⊢ ( ∃ 𝑖 ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 14 |
13
|
exbii |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 15 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 16 |
|
df-rex |
⊢ ( ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 17 |
15 16
|
anbi12i |
⊢ ( ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 18 |
8 14 17
|
3bitr4i |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 19 |
7 18
|
bitri |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 20 |
19
|
exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 21 |
5
|
3anbi2i |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ) ) |
| 22 |
21
|
anbi1i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 23 |
|
df-bnj17 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 24 |
|
df-bnj17 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 25 |
22 23 24
|
3bitr4i |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 26 |
25
|
3exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 27 |
1 2 3 4
|
bnj882 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
| 28 |
27
|
eleq2i |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
| 29 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ∈ 𝐵 𝑦 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
| 30 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) |
| 31 |
30
|
rexbii |
⊢ ( ∃ 𝑓 ∈ 𝐵 𝑦 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) |
| 32 |
28 29 31
|
3bitri |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) |
| 33 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 34 |
4
|
eqabri |
⊢ ( 𝑓 ∈ 𝐵 ↔ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 35 |
34
|
anbi1i |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 36 |
35
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 ∈ 𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 37 |
32 33 36
|
3bitri |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 38 |
20 26 37
|
3bitr4ri |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 39 |
|
bnj643 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) → 𝜒 ) |
| 40 |
5
|
bnj564 |
⊢ ( 𝜒 → dom 𝑓 = 𝑛 ) |
| 41 |
40
|
eleq2d |
⊢ ( 𝜒 → ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛 ) ) |
| 42 |
|
anbi1 |
⊢ ( ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛 ) → ( ( 𝑖 ∈ dom 𝑓 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝑖 ∈ 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) ) |
| 43 |
|
bnj334 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝑓 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 44 |
|
bnj252 |
⊢ ( ( 𝑖 ∈ dom 𝑓 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝑓 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 45 |
43 44
|
bitri |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝑓 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 46 |
|
bnj334 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 47 |
|
bnj252 |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 48 |
46 47
|
bitri |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 49 |
42 45 48
|
3bitr4g |
⊢ ( ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛 ) → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 50 |
39 41 49
|
3syl |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 51 |
50
|
ibi |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) → ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 52 |
51
|
2eximi |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) → ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 53 |
52
|
eximi |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 54 |
38 53
|
sylbi |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |