Step |
Hyp |
Ref |
Expression |
1 |
|
bnj944.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj944.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj944.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj944.4 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
5 |
|
bnj944.7 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
6 |
|
bnj944.10 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
7 |
|
bnj944.12 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
8 |
|
bnj944.13 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
9 |
|
bnj944.14 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
10 |
|
bnj944.15 |
⊢ ( 𝜎 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ) |
11 |
|
simpl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
12 |
|
bnj667 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
13 |
3 12
|
sylbi |
⊢ ( 𝜒 → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
14 |
13 9
|
sylibr |
⊢ ( 𝜒 → 𝜏 ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝜏 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝜏 ) |
17 |
3
|
bnj1232 |
⊢ ( 𝜒 → 𝑛 ∈ 𝐷 ) |
18 |
|
vex |
⊢ 𝑚 ∈ V |
19 |
18
|
bnj216 |
⊢ ( 𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛 ) |
20 |
|
id |
⊢ ( 𝑝 = suc 𝑛 → 𝑝 = suc 𝑛 ) |
21 |
17 19 20
|
3anim123i |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
22 |
|
3ancomb |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
23 |
10 22
|
bitri |
⊢ ( 𝜎 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
24 |
21 23
|
sylibr |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝜎 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝜎 ) |
26 |
|
bnj253 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝜏 ∧ 𝜎 ) ) |
27 |
11 16 25 26
|
syl3anbrc |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) ) |
28 |
6 9 10 1 2
|
bnj938 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
29 |
7 28
|
eqeltrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐶 ∈ V ) |
30 |
27 29
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V ) |
31 |
|
bnj658 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ) |
32 |
3 31
|
sylbi |
⊢ ( 𝜒 → ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ) |
34 |
|
simp3 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝑝 = suc 𝑛 ) |
35 |
|
bnj291 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ∧ 𝑝 = suc 𝑛 ) ) |
36 |
33 34 35
|
sylanbrc |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) ) |
38 |
|
opeq2 |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → 〈 𝑛 , 𝐶 〉 = 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 ) |
39 |
38
|
sneqd |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → { 〈 𝑛 , 𝐶 〉 } = { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) |
40 |
39
|
uneq2d |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) = ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) ) |
41 |
8 40
|
syl5eq |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) ) |
42 |
41
|
sbceq1d |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( [ 𝐺 / 𝑓 ] 𝜑′ ↔ [ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) / 𝑓 ] 𝜑′ ) ) |
43 |
5 42
|
syl5bb |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( 𝜑″ ↔ [ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) / 𝑓 ] 𝜑′ ) ) |
44 |
43
|
imbi2d |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) → 𝜑″ ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) → [ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) / 𝑓 ] 𝜑′ ) ) ) |
45 |
|
biid |
⊢ ( [ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) / 𝑓 ] 𝜑′ ↔ [ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) / 𝑓 ] 𝜑′ ) |
46 |
|
eqid |
⊢ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) |
47 |
|
0ex |
⊢ ∅ ∈ V |
48 |
47
|
elimel |
⊢ if ( 𝐶 ∈ V , 𝐶 , ∅ ) ∈ V |
49 |
1 4 45 6 46 48
|
bnj929 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) → [ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) / 𝑓 ] 𝜑′ ) |
50 |
44 49
|
dedth |
⊢ ( 𝐶 ∈ V → ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ) → 𝜑″ ) ) |
51 |
30 37 50
|
sylc |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝜑″ ) |