Metamath Proof Explorer


Theorem bnj944

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj944.1 φf=predXAR
bnj944.2 ψiωsucinfsuci=yfipredyAR
bnj944.3 χnDfFnnφψ
bnj944.4 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj944.7 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj944.10 D=ω
bnj944.12 C=yfmpredyAR
bnj944.13 G=fnC
bnj944.14 τfFnnφψ
bnj944.15 σnDp=sucnmn
Assertion bnj944 Could not format assertion : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ph" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj944.1 φf=predXAR
2 bnj944.2 ψiωsucinfsuci=yfipredyAR
3 bnj944.3 χnDfFnnφψ
4 bnj944.4 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
5 bnj944.7 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
6 bnj944.10 D=ω
7 bnj944.12 C=yfmpredyAR
8 bnj944.13 G=fnC
9 bnj944.14 τfFnnφψ
10 bnj944.15 σnDp=sucnmn
11 simpl RFrSeAXAχn=sucmp=sucnRFrSeAXA
12 bnj667 nDfFnnφψfFnnφψ
13 3 12 sylbi χfFnnφψ
14 13 9 sylibr χτ
15 14 3ad2ant1 χn=sucmp=sucnτ
16 15 adantl RFrSeAXAχn=sucmp=sucnτ
17 3 bnj1232 χnD
18 vex mV
19 18 bnj216 n=sucmmn
20 id p=sucnp=sucn
21 17 19 20 3anim123i χn=sucmp=sucnnDmnp=sucn
22 3ancomb nDp=sucnmnnDmnp=sucn
23 10 22 bitri σnDmnp=sucn
24 21 23 sylibr χn=sucmp=sucnσ
25 24 adantl RFrSeAXAχn=sucmp=sucnσ
26 bnj253 RFrSeAXAτσRFrSeAXAτσ
27 11 16 25 26 syl3anbrc RFrSeAXAχn=sucmp=sucnRFrSeAXAτσ
28 6 9 10 1 2 bnj938 RFrSeAXAτσyfmpredyARV
29 7 28 eqeltrid RFrSeAXAτσCV
30 27 29 syl RFrSeAXAχn=sucmp=sucnCV
31 bnj658 nDfFnnφψnDfFnnφ
32 3 31 sylbi χnDfFnnφ
33 32 3ad2ant1 χn=sucmp=sucnnDfFnnφ
34 simp3 χn=sucmp=sucnp=sucn
35 bnj291 nDp=sucnfFnnφnDfFnnφp=sucn
36 33 34 35 sylanbrc χn=sucmp=sucnnDp=sucnfFnnφ
37 36 adantl RFrSeAXAχn=sucmp=sucnnDp=sucnfFnnφ
38 opeq2 C=ifCVCnC=nifCVC
39 38 sneqd C=ifCVCnC=nifCVC
40 39 uneq2d C=ifCVCfnC=fnifCVC
41 8 40 eqtrid C=ifCVCG=fnifCVC
42 41 sbceq1d Could not format ( C = if ( C e. _V , C , (/) ) -> ( [. G / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) : No typesetting found for |- ( C = if ( C e. _V , C , (/) ) -> ( [. G / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) with typecode |-
43 5 42 bitrid Could not format ( C = if ( C e. _V , C , (/) ) -> ( ph" <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) : No typesetting found for |- ( C = if ( C e. _V , C , (/) ) -> ( ph" <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) with typecode |-
44 43 imbi2d Could not format ( C = if ( C e. _V , C , (/) ) -> ( ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) <-> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) ) : No typesetting found for |- ( C = if ( C e. _V , C , (/) ) -> ( ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) <-> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) ) with typecode |-
45 biid Could not format ( [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) : No typesetting found for |- ( [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) with typecode |-
46 eqid fnifCVC=fnifCVC
47 0ex V
48 47 elimel ifCVCV
49 1 4 45 6 46 48 bnj929 Could not format ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) : No typesetting found for |- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) with typecode |-
50 44 49 dedth Could not format ( C e. _V -> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) ) : No typesetting found for |- ( C e. _V -> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) ) with typecode |-
51 30 37 50 sylc Could not format ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ph" ) : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ph" ) with typecode |-