Metamath Proof Explorer


Theorem bnj944

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj944.1 φ f = pred X A R
bnj944.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj944.3 χ n D f Fn n φ ψ
bnj944.4 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj944.7 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj944.10 D = ω
bnj944.12 C = y f m pred y A R
bnj944.13 G = f n C
bnj944.14 τ f Fn n φ ψ
bnj944.15 σ n D p = suc n m n
Assertion bnj944 Could not format assertion : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ph" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj944.1 φ f = pred X A R
2 bnj944.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj944.3 χ n D f Fn n φ ψ
4 bnj944.4 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
5 bnj944.7 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
6 bnj944.10 D = ω
7 bnj944.12 C = y f m pred y A R
8 bnj944.13 G = f n C
9 bnj944.14 τ f Fn n φ ψ
10 bnj944.15 σ n D p = suc n m n
11 simpl R FrSe A X A χ n = suc m p = suc n R FrSe A X A
12 bnj667 n D f Fn n φ ψ f Fn n φ ψ
13 3 12 sylbi χ f Fn n φ ψ
14 13 9 sylibr χ τ
15 14 3ad2ant1 χ n = suc m p = suc n τ
16 15 adantl R FrSe A X A χ n = suc m p = suc n τ
17 3 bnj1232 χ n D
18 vex m V
19 18 bnj216 n = suc m m n
20 id p = suc n p = suc n
21 17 19 20 3anim123i χ n = suc m p = suc n n D m n p = suc n
22 3ancomb n D p = suc n m n n D m n p = suc n
23 10 22 bitri σ n D m n p = suc n
24 21 23 sylibr χ n = suc m p = suc n σ
25 24 adantl R FrSe A X A χ n = suc m p = suc n σ
26 bnj253 R FrSe A X A τ σ R FrSe A X A τ σ
27 11 16 25 26 syl3anbrc R FrSe A X A χ n = suc m p = suc n R FrSe A X A τ σ
28 6 9 10 1 2 bnj938 R FrSe A X A τ σ y f m pred y A R V
29 7 28 eqeltrid R FrSe A X A τ σ C V
30 27 29 syl R FrSe A X A χ n = suc m p = suc n C V
31 bnj658 n D f Fn n φ ψ n D f Fn n φ
32 3 31 sylbi χ n D f Fn n φ
33 32 3ad2ant1 χ n = suc m p = suc n n D f Fn n φ
34 simp3 χ n = suc m p = suc n p = suc n
35 bnj291 n D p = suc n f Fn n φ n D f Fn n φ p = suc n
36 33 34 35 sylanbrc χ n = suc m p = suc n n D p = suc n f Fn n φ
37 36 adantl R FrSe A X A χ n = suc m p = suc n n D p = suc n f Fn n φ
38 opeq2 C = if C V C n C = n if C V C
39 38 sneqd C = if C V C n C = n if C V C
40 39 uneq2d C = if C V C f n C = f n if C V C
41 8 40 eqtrid C = if C V C G = f n if C V C
42 41 sbceq1d Could not format ( C = if ( C e. _V , C , (/) ) -> ( [. G / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) : No typesetting found for |- ( C = if ( C e. _V , C , (/) ) -> ( [. G / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) with typecode |-
43 5 42 syl5bb Could not format ( C = if ( C e. _V , C , (/) ) -> ( ph" <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) : No typesetting found for |- ( C = if ( C e. _V , C , (/) ) -> ( ph" <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) with typecode |-
44 43 imbi2d Could not format ( C = if ( C e. _V , C , (/) ) -> ( ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) <-> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) ) : No typesetting found for |- ( C = if ( C e. _V , C , (/) ) -> ( ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) <-> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) ) ) with typecode |-
45 biid Could not format ( [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) : No typesetting found for |- ( [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' <-> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) with typecode |-
46 eqid f n if C V C = f n if C V C
47 0ex V
48 47 elimel if C V C V
49 1 4 45 6 46 48 bnj929 Could not format ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) : No typesetting found for |- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> [. ( f u. { <. n , if ( C e. _V , C , (/) ) >. } ) / f ]. ph' ) with typecode |-
50 44 49 dedth Could not format ( C e. _V -> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) ) : No typesetting found for |- ( C e. _V -> ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) ) with typecode |-
51 30 37 50 sylc Could not format ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ph" ) : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ph" ) with typecode |-