Metamath Proof Explorer


Theorem bnj953

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj953.1 ψ i ω suc i n f suc i = y f i pred y A R
bnj953.2 G i = f i y G i = f i
Assertion bnj953 G i = f i G suc i = f suc i i ω suc i n ψ G suc i = y G i pred y A R

Proof

Step Hyp Ref Expression
1 bnj953.1 ψ i ω suc i n f suc i = y f i pred y A R
2 bnj953.2 G i = f i y G i = f i
3 bnj312 G i = f i G suc i = f suc i i ω suc i n ψ G suc i = f suc i G i = f i i ω suc i n ψ
4 bnj251 G suc i = f suc i G i = f i i ω suc i n ψ G suc i = f suc i G i = f i i ω suc i n ψ
5 3 4 bitri G i = f i G suc i = f suc i i ω suc i n ψ G suc i = f suc i G i = f i i ω suc i n ψ
6 1 bnj115 ψ i i ω suc i n f suc i = y f i pred y A R
7 sp i i ω suc i n f suc i = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
8 7 impcom i ω suc i n i i ω suc i n f suc i = y f i pred y A R f suc i = y f i pred y A R
9 6 8 sylan2b i ω suc i n ψ f suc i = y f i pred y A R
10 2 bnj956 G i = f i y G i pred y A R = y f i pred y A R
11 eqtr3 f suc i = y f i pred y A R y G i pred y A R = y f i pred y A R f suc i = y G i pred y A R
12 9 10 11 syl2anr G i = f i i ω suc i n ψ f suc i = y G i pred y A R
13 eqtr G suc i = f suc i f suc i = y G i pred y A R G suc i = y G i pred y A R
14 12 13 sylan2 G suc i = f suc i G i = f i i ω suc i n ψ G suc i = y G i pred y A R
15 5 14 sylbi G i = f i G suc i = f suc i i ω suc i n ψ G suc i = y G i pred y A R