Metamath Proof Explorer


Theorem bnj967

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj967.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj967.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj967.10 𝐷 = ( ω ∖ { ∅ } )
bnj967.12 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj967.13 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
bnj967.44 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V )
Assertion bnj967 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj967.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj967.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
3 bnj967.10 𝐷 = ( ω ∖ { ∅ } )
4 bnj967.12 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
5 bnj967.13 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
6 bnj967.44 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V )
7 6 3adant3 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → 𝐶 ∈ V )
8 2 bnj1235 ( 𝜒𝑓 Fn 𝑛 )
9 8 3ad2ant1 ( ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → 𝑓 Fn 𝑛 )
10 9 3ad2ant2 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → 𝑓 Fn 𝑛 )
11 simp23 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → 𝑝 = suc 𝑛 )
12 simp3 ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) → suc 𝑖𝑛 )
13 12 3ad2ant3 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → suc 𝑖𝑛 )
14 7 10 11 13 bnj951 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛 ) )
15 3 bnj923 ( 𝑛𝐷𝑛 ∈ ω )
16 2 15 bnj769 ( 𝜒𝑛 ∈ ω )
17 16 3ad2ant1 ( ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → 𝑛 ∈ ω )
18 17 12 bnj240 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝑛 ∈ ω ∧ suc 𝑖𝑛 ) )
19 nnord ( 𝑛 ∈ ω → Ord 𝑛 )
20 ordtr ( Ord 𝑛 → Tr 𝑛 )
21 19 20 syl ( 𝑛 ∈ ω → Tr 𝑛 )
22 trsuc ( ( Tr 𝑛 ∧ suc 𝑖𝑛 ) → 𝑖𝑛 )
23 21 22 sylan ( ( 𝑛 ∈ ω ∧ suc 𝑖𝑛 ) → 𝑖𝑛 )
24 18 23 syl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → 𝑖𝑛 )
25 bnj658 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ) )
26 25 anim1i ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛 ) ∧ 𝑖𝑛 ) → ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ) ∧ 𝑖𝑛 ) )
27 df-bnj17 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) ↔ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ) ∧ 𝑖𝑛 ) )
28 26 27 sylibr ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛 ) ∧ 𝑖𝑛 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) )
29 14 24 28 syl2anc ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) )
30 5 bnj945 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
31 29 30 syl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
32 5 bnj945 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛 ) → ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) )
33 14 32 syl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) )
34 3simpb ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) → ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) )
35 34 3ad2ant3 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) )
36 2 bnj1254 ( 𝜒𝜓 )
37 36 3ad2ant1 ( ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → 𝜓 )
38 37 3ad2ant2 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → 𝜓 )
39 31 33 35 38 bnj951 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) ∧ 𝜓 ) )
40 4 5 bnj958 ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) → ∀ 𝑦 ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
41 1 40 bnj953 ( ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) ∧ 𝜓 ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
42 39 41 syl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )