| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brfi1uzind.r |
⊢ Rel 𝐺 |
| 2 |
|
brfi1uzind.f |
⊢ 𝐹 ∈ V |
| 3 |
|
brfi1uzind.l |
⊢ 𝐿 ∈ ℕ0 |
| 4 |
|
brfi1uzind.1 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) |
| 5 |
|
brfi1uzind.2 |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) |
| 6 |
|
brfi1uzind.3 |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) |
| 7 |
|
brfi1uzind.4 |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) |
| 8 |
|
brfi1uzind.base |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) |
| 9 |
|
brfi1uzind.step |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
| 10 |
1
|
brrelex12i |
⊢ ( 𝑉 𝐺 𝐸 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → 𝑉 ∈ V ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝑎 = 𝑉 ) → 𝐸 ∈ V ) |
| 13 |
|
breq12 |
⊢ ( ( 𝑎 = 𝑉 ∧ 𝑏 = 𝐸 ) → ( 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
| 14 |
13
|
adantll |
⊢ ( ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝑎 = 𝑉 ) ∧ 𝑏 = 𝐸 ) → ( 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
| 15 |
12 14
|
sbcied |
⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝑎 = 𝑉 ) → ( [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
| 16 |
11 15
|
sbcied |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ 𝑉 𝐺 𝐸 ) ) |
| 17 |
16
|
biimprcd |
⊢ ( 𝑉 𝐺 𝐸 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ) ) |
| 18 |
10 17
|
mpd |
⊢ ( 𝑉 𝐺 𝐸 → [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ) |
| 19 |
|
vex |
⊢ 𝑣 ∈ V |
| 20 |
|
vex |
⊢ 𝑒 ∈ V |
| 21 |
|
breq12 |
⊢ ( ( 𝑎 = 𝑣 ∧ 𝑏 = 𝑒 ) → ( 𝑎 𝐺 𝑏 ↔ 𝑣 𝐺 𝑒 ) ) |
| 22 |
19 20 21
|
sbc2ie |
⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ 𝑣 𝐺 𝑒 ) |
| 23 |
19
|
difexi |
⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
| 24 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑏 = 𝐹 ) → ( 𝑎 𝐺 𝑏 ↔ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ) |
| 25 |
23 2 24
|
sbc2ie |
⊢ ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝑎 𝐺 𝑏 ↔ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) |
| 26 |
6 25
|
sylibr |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝑎 𝐺 𝑏 ) |
| 27 |
22 26
|
sylanb |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 𝑎 𝐺 𝑏 ) |
| 28 |
22 8
|
sylanb |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) |
| 29 |
22
|
3anbi1i |
⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
| 30 |
29
|
anbi2i |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
| 31 |
30 9
|
sylanb |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
| 32 |
2 3 4 5 27 7 28 31
|
fi1uzind |
⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 𝑎 𝐺 𝑏 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |
| 33 |
18 32
|
syl3an1 |
⊢ ( ( 𝑉 𝐺 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |