Description: Binary relation form of OutsideOf . Theorem 6.4 of Schwabhauser p. 43. (Contributed by Scott Fenton, 17-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | broutsideof | ⊢ ( 𝑃 OutsideOf 〈 𝐴 , 𝐵 〉 ↔ ( 𝑃 Colinear 〈 𝐴 , 𝐵 〉 ∧ ¬ 𝑃 Btwn 〈 𝐴 , 𝐵 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-outsideof | ⊢ OutsideOf = ( Colinear ∖ Btwn ) | |
2 | 1 | breqi | ⊢ ( 𝑃 OutsideOf 〈 𝐴 , 𝐵 〉 ↔ 𝑃 ( Colinear ∖ Btwn ) 〈 𝐴 , 𝐵 〉 ) |
3 | brdif | ⊢ ( 𝑃 ( Colinear ∖ Btwn ) 〈 𝐴 , 𝐵 〉 ↔ ( 𝑃 Colinear 〈 𝐴 , 𝐵 〉 ∧ ¬ 𝑃 Btwn 〈 𝐴 , 𝐵 〉 ) ) | |
4 | 2 3 | bitri | ⊢ ( 𝑃 OutsideOf 〈 𝐴 , 𝐵 〉 ↔ ( 𝑃 Colinear 〈 𝐴 , 𝐵 〉 ∧ ¬ 𝑃 Btwn 〈 𝐴 , 𝐵 〉 ) ) |