Metamath Proof Explorer


Theorem broutsideof

Description: Binary relation form of OutsideOf . Theorem 6.4 of Schwabhauser p. 43. (Contributed by Scott Fenton, 17-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion broutsideof
|- ( P OutsideOf <. A , B >. <-> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) )

Proof

Step Hyp Ref Expression
1 df-outsideof
 |-  OutsideOf = ( Colinear \ Btwn )
2 1 breqi
 |-  ( P OutsideOf <. A , B >. <-> P ( Colinear \ Btwn ) <. A , B >. )
3 brdif
 |-  ( P ( Colinear \ Btwn ) <. A , B >. <-> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) )
4 2 3 bitri
 |-  ( P OutsideOf <. A , B >. <-> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) )