| Step |
Hyp |
Ref |
Expression |
| 1 |
|
broutsideof |
|- ( P OutsideOf <. A , B >. <-> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) |
| 2 |
|
btwntriv1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A Btwn <. A , B >. ) |
| 3 |
2
|
3adant3r1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A Btwn <. A , B >. ) |
| 4 |
|
breq1 |
|- ( A = P -> ( A Btwn <. A , B >. <-> P Btwn <. A , B >. ) ) |
| 5 |
3 4
|
syl5ibcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A = P -> P Btwn <. A , B >. ) ) |
| 6 |
5
|
necon3bd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( -. P Btwn <. A , B >. -> A =/= P ) ) |
| 7 |
6
|
imp |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ -. P Btwn <. A , B >. ) -> A =/= P ) |
| 8 |
7
|
adantrl |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> A =/= P ) |
| 9 |
|
btwntriv2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B Btwn <. A , B >. ) |
| 10 |
9
|
3adant3r1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B Btwn <. A , B >. ) |
| 11 |
|
breq1 |
|- ( B = P -> ( B Btwn <. A , B >. <-> P Btwn <. A , B >. ) ) |
| 12 |
10 11
|
syl5ibcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B = P -> P Btwn <. A , B >. ) ) |
| 13 |
12
|
necon3bd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( -. P Btwn <. A , B >. -> B =/= P ) ) |
| 14 |
13
|
imp |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ -. P Btwn <. A , B >. ) -> B =/= P ) |
| 15 |
14
|
adantrl |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> B =/= P ) |
| 16 |
|
brcolinear |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P Colinear <. A , B >. <-> ( P Btwn <. A , B >. \/ A Btwn <. B , P >. \/ B Btwn <. P , A >. ) ) ) |
| 17 |
|
pm2.24 |
|- ( P Btwn <. A , B >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 18 |
17
|
a1i |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P Btwn <. A , B >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 19 |
|
3anrot |
|- ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) |
| 20 |
|
btwncom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. <-> A Btwn <. P , B >. ) ) |
| 21 |
19 20
|
sylan2b |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. <-> A Btwn <. P , B >. ) ) |
| 22 |
|
orc |
|- ( A Btwn <. P , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
| 23 |
21 22
|
biimtrdi |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 24 |
23
|
a1dd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 25 |
|
olc |
|- ( B Btwn <. P , A >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
| 26 |
25
|
a1d |
|- ( B Btwn <. P , A >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 27 |
26
|
a1i |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. P , A >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 28 |
18 24 27
|
3jaod |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( P Btwn <. A , B >. \/ A Btwn <. B , P >. \/ B Btwn <. P , A >. ) -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 29 |
16 28
|
sylbid |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P Colinear <. A , B >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 30 |
29
|
imp32 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
| 31 |
8 15 30
|
3jca |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
| 32 |
|
simp3 |
|- ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
| 33 |
|
3ancomb |
|- ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
| 34 |
|
btwncolinear2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> P Colinear <. A , B >. ) ) |
| 35 |
33 34
|
sylan2b |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> P Colinear <. A , B >. ) ) |
| 36 |
|
btwncolinear1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. P , A >. -> P Colinear <. A , B >. ) ) |
| 37 |
35 36
|
jaod |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> P Colinear <. A , B >. ) ) |
| 38 |
32 37
|
syl5 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> P Colinear <. A , B >. ) ) |
| 39 |
38
|
imp |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) -> P Colinear <. A , B >. ) |
| 40 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> A =/= P ) |
| 41 |
40
|
neneqd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> -. A = P ) |
| 42 |
|
simprl1 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> A Btwn <. P , B >. ) |
| 43 |
|
simprr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> P Btwn <. A , B >. ) |
| 44 |
|
simpl |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> N e. NN ) |
| 45 |
|
simpr2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 46 |
|
simpr1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
| 47 |
|
simpr3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 48 |
|
btwnswapid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ P e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ P Btwn <. A , B >. ) -> A = P ) ) |
| 49 |
44 45 46 47 48
|
syl13anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ P Btwn <. A , B >. ) -> A = P ) ) |
| 50 |
49
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> ( ( A Btwn <. P , B >. /\ P Btwn <. A , B >. ) -> A = P ) ) |
| 51 |
42 43 50
|
mp2and |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> A = P ) |
| 52 |
51
|
expr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> ( P Btwn <. A , B >. -> A = P ) ) |
| 53 |
41 52
|
mtod |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> -. P Btwn <. A , B >. ) |
| 54 |
53
|
3exp2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) |
| 55 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> B =/= P ) |
| 56 |
55
|
neneqd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> -. B = P ) |
| 57 |
|
simprl1 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> B Btwn <. P , A >. ) |
| 58 |
|
simprr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> P Btwn <. A , B >. ) |
| 59 |
44 46 45 47 58
|
btwncomand |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> P Btwn <. B , A >. ) |
| 60 |
|
3anrot |
|- ( ( B e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) <-> ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
| 61 |
|
btwnswapid |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( B Btwn <. P , A >. /\ P Btwn <. B , A >. ) -> B = P ) ) |
| 62 |
60 61
|
sylan2br |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( B Btwn <. P , A >. /\ P Btwn <. B , A >. ) -> B = P ) ) |
| 63 |
62
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> ( ( B Btwn <. P , A >. /\ P Btwn <. B , A >. ) -> B = P ) ) |
| 64 |
57 59 63
|
mp2and |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> B = P ) |
| 65 |
64
|
expr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> ( P Btwn <. A , B >. -> B = P ) ) |
| 66 |
56 65
|
mtod |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> -. P Btwn <. A , B >. ) |
| 67 |
66
|
3exp2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. P , A >. -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) |
| 68 |
54 67
|
jaod |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) |
| 69 |
68
|
com12 |
|- ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) |
| 70 |
69
|
com4l |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A =/= P -> ( B =/= P -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> -. P Btwn <. A , B >. ) ) ) ) |
| 71 |
70
|
3imp2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) -> -. P Btwn <. A , B >. ) |
| 72 |
39 71
|
jca |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) -> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) |
| 73 |
31 72
|
impbida |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
| 74 |
1 73
|
bitrid |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |