| Step | Hyp | Ref | Expression | 
						
							| 1 |  | broutsideof |  |-  ( P OutsideOf <. A , B >. <-> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) | 
						
							| 2 |  | btwntriv1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A Btwn <. A , B >. ) | 
						
							| 3 | 2 | 3adant3r1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A Btwn <. A , B >. ) | 
						
							| 4 |  | breq1 |  |-  ( A = P -> ( A Btwn <. A , B >. <-> P Btwn <. A , B >. ) ) | 
						
							| 5 | 3 4 | syl5ibcom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A = P -> P Btwn <. A , B >. ) ) | 
						
							| 6 | 5 | necon3bd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( -. P Btwn <. A , B >. -> A =/= P ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ -. P Btwn <. A , B >. ) -> A =/= P ) | 
						
							| 8 | 7 | adantrl |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> A =/= P ) | 
						
							| 9 |  | btwntriv2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B Btwn <. A , B >. ) | 
						
							| 10 | 9 | 3adant3r1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B Btwn <. A , B >. ) | 
						
							| 11 |  | breq1 |  |-  ( B = P -> ( B Btwn <. A , B >. <-> P Btwn <. A , B >. ) ) | 
						
							| 12 | 10 11 | syl5ibcom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B = P -> P Btwn <. A , B >. ) ) | 
						
							| 13 | 12 | necon3bd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( -. P Btwn <. A , B >. -> B =/= P ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ -. P Btwn <. A , B >. ) -> B =/= P ) | 
						
							| 15 | 14 | adantrl |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> B =/= P ) | 
						
							| 16 |  | brcolinear |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P Colinear <. A , B >. <-> ( P Btwn <. A , B >. \/ A Btwn <. B , P >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 17 |  | pm2.24 |  |-  ( P Btwn <. A , B >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 18 | 17 | a1i |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P Btwn <. A , B >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 19 |  | 3anrot |  |-  ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) | 
						
							| 20 |  | btwncom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. <-> A Btwn <. P , B >. ) ) | 
						
							| 21 | 19 20 | sylan2b |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. <-> A Btwn <. P , B >. ) ) | 
						
							| 22 |  | orc |  |-  ( A Btwn <. P , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 23 | 21 22 | biimtrdi |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 24 | 23 | a1dd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. B , P >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 25 |  | olc |  |-  ( B Btwn <. P , A >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 26 | 25 | a1d |  |-  ( B Btwn <. P , A >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 27 | 26 | a1i |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. P , A >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 28 | 18 24 27 | 3jaod |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( P Btwn <. A , B >. \/ A Btwn <. B , P >. \/ B Btwn <. P , A >. ) -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 29 | 16 28 | sylbid |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P Colinear <. A , B >. -> ( -. P Btwn <. A , B >. -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 30 | 29 | imp32 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 31 | 8 15 30 | 3jca |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) -> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 32 |  | simp3 |  |-  ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 33 |  | 3ancomb |  |-  ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 34 |  | btwncolinear2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> P Colinear <. A , B >. ) ) | 
						
							| 35 | 33 34 | sylan2b |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> P Colinear <. A , B >. ) ) | 
						
							| 36 |  | btwncolinear1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. P , A >. -> P Colinear <. A , B >. ) ) | 
						
							| 37 | 35 36 | jaod |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> P Colinear <. A , B >. ) ) | 
						
							| 38 | 32 37 | syl5 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) -> P Colinear <. A , B >. ) ) | 
						
							| 39 | 38 | imp |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) -> P Colinear <. A , B >. ) | 
						
							| 40 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> A =/= P ) | 
						
							| 41 | 40 | neneqd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> -. A = P ) | 
						
							| 42 |  | simprl1 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> A Btwn <. P , B >. ) | 
						
							| 43 |  | simprr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> P Btwn <. A , B >. ) | 
						
							| 44 |  | simpl |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 45 |  | simpr2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 46 |  | simpr1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 47 |  | simpr3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 48 |  | btwnswapid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ P e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ P Btwn <. A , B >. ) -> A = P ) ) | 
						
							| 49 | 44 45 46 47 48 | syl13anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. /\ P Btwn <. A , B >. ) -> A = P ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> ( ( A Btwn <. P , B >. /\ P Btwn <. A , B >. ) -> A = P ) ) | 
						
							| 51 | 42 43 50 | mp2and |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> A = P ) | 
						
							| 52 | 51 | expr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> ( P Btwn <. A , B >. -> A = P ) ) | 
						
							| 53 | 41 52 | mtod |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A Btwn <. P , B >. /\ A =/= P /\ B =/= P ) ) -> -. P Btwn <. A , B >. ) | 
						
							| 54 | 53 | 3exp2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. P , B >. -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) | 
						
							| 55 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> B =/= P ) | 
						
							| 56 | 55 | neneqd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> -. B = P ) | 
						
							| 57 |  | simprl1 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> B Btwn <. P , A >. ) | 
						
							| 58 |  | simprr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> P Btwn <. A , B >. ) | 
						
							| 59 | 44 46 45 47 58 | btwncomand |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> P Btwn <. B , A >. ) | 
						
							| 60 |  | 3anrot |  |-  ( ( B e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) <-> ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 61 |  | btwnswapid |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( B Btwn <. P , A >. /\ P Btwn <. B , A >. ) -> B = P ) ) | 
						
							| 62 | 60 61 | sylan2br |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( B Btwn <. P , A >. /\ P Btwn <. B , A >. ) -> B = P ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> ( ( B Btwn <. P , A >. /\ P Btwn <. B , A >. ) -> B = P ) ) | 
						
							| 64 | 57 59 63 | mp2and |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) /\ P Btwn <. A , B >. ) ) -> B = P ) | 
						
							| 65 | 64 | expr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> ( P Btwn <. A , B >. -> B = P ) ) | 
						
							| 66 | 56 65 | mtod |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( B Btwn <. P , A >. /\ A =/= P /\ B =/= P ) ) -> -. P Btwn <. A , B >. ) | 
						
							| 67 | 66 | 3exp2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. P , A >. -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) | 
						
							| 68 | 54 67 | jaod |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) | 
						
							| 69 | 68 | com12 |  |-  ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A =/= P -> ( B =/= P -> -. P Btwn <. A , B >. ) ) ) ) | 
						
							| 70 | 69 | com4l |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A =/= P -> ( B =/= P -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> -. P Btwn <. A , B >. ) ) ) ) | 
						
							| 71 | 70 | 3imp2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) -> -. P Btwn <. A , B >. ) | 
						
							| 72 | 39 71 | jca |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) -> ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) ) | 
						
							| 73 | 31 72 | impbida |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( P Colinear <. A , B >. /\ -. P Btwn <. A , B >. ) <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 74 | 1 73 | bitrid |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |