Metamath Proof Explorer


Theorem broutsideof2

Description: Alternate form of OutsideOf . Definition 6.1 of Schwabhauser p. 43. (Contributed by Scott Fenton, 17-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion broutsideof2 N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B A P B P A Btwn P B B Btwn P A

Proof

Step Hyp Ref Expression
1 broutsideof P OutsideOf A B P Colinear A B ¬ P Btwn A B
2 btwntriv1 N A 𝔼 N B 𝔼 N A Btwn A B
3 2 3adant3r1 N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn A B
4 breq1 A = P A Btwn A B P Btwn A B
5 3 4 syl5ibcom N P 𝔼 N A 𝔼 N B 𝔼 N A = P P Btwn A B
6 5 necon3bd N P 𝔼 N A 𝔼 N B 𝔼 N ¬ P Btwn A B A P
7 6 imp N P 𝔼 N A 𝔼 N B 𝔼 N ¬ P Btwn A B A P
8 7 adantrl N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B ¬ P Btwn A B A P
9 btwntriv2 N A 𝔼 N B 𝔼 N B Btwn A B
10 9 3adant3r1 N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn A B
11 breq1 B = P B Btwn A B P Btwn A B
12 10 11 syl5ibcom N P 𝔼 N A 𝔼 N B 𝔼 N B = P P Btwn A B
13 12 necon3bd N P 𝔼 N A 𝔼 N B 𝔼 N ¬ P Btwn A B B P
14 13 imp N P 𝔼 N A 𝔼 N B 𝔼 N ¬ P Btwn A B B P
15 14 adantrl N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B ¬ P Btwn A B B P
16 brcolinear N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B P Btwn A B A Btwn B P B Btwn P A
17 pm2.24 P Btwn A B ¬ P Btwn A B A Btwn P B B Btwn P A
18 17 a1i N P 𝔼 N A 𝔼 N B 𝔼 N P Btwn A B ¬ P Btwn A B A Btwn P B B Btwn P A
19 3anrot P 𝔼 N A 𝔼 N B 𝔼 N A 𝔼 N B 𝔼 N P 𝔼 N
20 btwncom N A 𝔼 N B 𝔼 N P 𝔼 N A Btwn B P A Btwn P B
21 19 20 sylan2b N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn B P A Btwn P B
22 orc A Btwn P B A Btwn P B B Btwn P A
23 21 22 syl6bi N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn B P A Btwn P B B Btwn P A
24 23 a1dd N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn B P ¬ P Btwn A B A Btwn P B B Btwn P A
25 olc B Btwn P A A Btwn P B B Btwn P A
26 25 a1d B Btwn P A ¬ P Btwn A B A Btwn P B B Btwn P A
27 26 a1i N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A ¬ P Btwn A B A Btwn P B B Btwn P A
28 18 24 27 3jaod N P 𝔼 N A 𝔼 N B 𝔼 N P Btwn A B A Btwn B P B Btwn P A ¬ P Btwn A B A Btwn P B B Btwn P A
29 16 28 sylbid N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B ¬ P Btwn A B A Btwn P B B Btwn P A
30 29 imp32 N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B ¬ P Btwn A B A Btwn P B B Btwn P A
31 8 15 30 3jca N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B ¬ P Btwn A B A P B P A Btwn P B B Btwn P A
32 simp3 A P B P A Btwn P B B Btwn P A A Btwn P B B Btwn P A
33 3ancomb P 𝔼 N A 𝔼 N B 𝔼 N P 𝔼 N B 𝔼 N A 𝔼 N
34 btwncolinear2 N P 𝔼 N B 𝔼 N A 𝔼 N A Btwn P B P Colinear A B
35 33 34 sylan2b N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B P Colinear A B
36 btwncolinear1 N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A P Colinear A B
37 35 36 jaod N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B B Btwn P A P Colinear A B
38 32 37 syl5 N P 𝔼 N A 𝔼 N B 𝔼 N A P B P A Btwn P B B Btwn P A P Colinear A B
39 38 imp N P 𝔼 N A 𝔼 N B 𝔼 N A P B P A Btwn P B B Btwn P A P Colinear A B
40 simpr2 N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P A P
41 40 neneqd N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P ¬ A = P
42 simprl1 N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P P Btwn A B A Btwn P B
43 simprr N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P P Btwn A B P Btwn A B
44 simpl N P 𝔼 N A 𝔼 N B 𝔼 N N
45 simpr2 N P 𝔼 N A 𝔼 N B 𝔼 N A 𝔼 N
46 simpr1 N P 𝔼 N A 𝔼 N B 𝔼 N P 𝔼 N
47 simpr3 N P 𝔼 N A 𝔼 N B 𝔼 N B 𝔼 N
48 btwnswapid N A 𝔼 N P 𝔼 N B 𝔼 N A Btwn P B P Btwn A B A = P
49 44 45 46 47 48 syl13anc N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B P Btwn A B A = P
50 49 adantr N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P P Btwn A B A Btwn P B P Btwn A B A = P
51 42 43 50 mp2and N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P P Btwn A B A = P
52 51 expr N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P P Btwn A B A = P
53 41 52 mtod N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P ¬ P Btwn A B
54 53 3exp2 N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B A P B P ¬ P Btwn A B
55 simpr3 N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P B P
56 55 neneqd N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P ¬ B = P
57 simprl1 N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P P Btwn A B B Btwn P A
58 simprr N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P P Btwn A B P Btwn A B
59 44 46 45 47 58 btwncomand N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P P Btwn A B P Btwn B A
60 3anrot B 𝔼 N P 𝔼 N A 𝔼 N P 𝔼 N A 𝔼 N B 𝔼 N
61 btwnswapid N B 𝔼 N P 𝔼 N A 𝔼 N B Btwn P A P Btwn B A B = P
62 60 61 sylan2br N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A P Btwn B A B = P
63 62 adantr N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P P Btwn A B B Btwn P A P Btwn B A B = P
64 57 59 63 mp2and N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P P Btwn A B B = P
65 64 expr N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P P Btwn A B B = P
66 56 65 mtod N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P ¬ P Btwn A B
67 66 3exp2 N P 𝔼 N A 𝔼 N B 𝔼 N B Btwn P A A P B P ¬ P Btwn A B
68 54 67 jaod N P 𝔼 N A 𝔼 N B 𝔼 N A Btwn P B B Btwn P A A P B P ¬ P Btwn A B
69 68 com12 A Btwn P B B Btwn P A N P 𝔼 N A 𝔼 N B 𝔼 N A P B P ¬ P Btwn A B
70 69 com4l N P 𝔼 N A 𝔼 N B 𝔼 N A P B P A Btwn P B B Btwn P A ¬ P Btwn A B
71 70 3imp2 N P 𝔼 N A 𝔼 N B 𝔼 N A P B P A Btwn P B B Btwn P A ¬ P Btwn A B
72 39 71 jca N P 𝔼 N A 𝔼 N B 𝔼 N A P B P A Btwn P B B Btwn P A P Colinear A B ¬ P Btwn A B
73 31 72 impbida N P 𝔼 N A 𝔼 N B 𝔼 N P Colinear A B ¬ P Btwn A B A P B P A Btwn P B B Btwn P A
74 1 73 syl5bb N P 𝔼 N A 𝔼 N B 𝔼 N P OutsideOf A B A P B P A Btwn P B B Btwn P A