Step |
Hyp |
Ref |
Expression |
1 |
|
broutsideof |
|
2 |
|
btwntriv1 |
|
3 |
2
|
3adant3r1 |
|
4 |
|
breq1 |
|
5 |
3 4
|
syl5ibcom |
|
6 |
5
|
necon3bd |
|
7 |
6
|
imp |
|
8 |
7
|
adantrl |
|
9 |
|
btwntriv2 |
|
10 |
9
|
3adant3r1 |
|
11 |
|
breq1 |
|
12 |
10 11
|
syl5ibcom |
|
13 |
12
|
necon3bd |
|
14 |
13
|
imp |
|
15 |
14
|
adantrl |
|
16 |
|
brcolinear |
|
17 |
|
pm2.24 |
|
18 |
17
|
a1i |
|
19 |
|
3anrot |
|
20 |
|
btwncom |
|
21 |
19 20
|
sylan2b |
|
22 |
|
orc |
|
23 |
21 22
|
syl6bi |
|
24 |
23
|
a1dd |
|
25 |
|
olc |
|
26 |
25
|
a1d |
|
27 |
26
|
a1i |
|
28 |
18 24 27
|
3jaod |
|
29 |
16 28
|
sylbid |
|
30 |
29
|
imp32 |
|
31 |
8 15 30
|
3jca |
|
32 |
|
simp3 |
|
33 |
|
3ancomb |
|
34 |
|
btwncolinear2 |
|
35 |
33 34
|
sylan2b |
|
36 |
|
btwncolinear1 |
|
37 |
35 36
|
jaod |
|
38 |
32 37
|
syl5 |
|
39 |
38
|
imp |
|
40 |
|
simpr2 |
|
41 |
40
|
neneqd |
|
42 |
|
simprl1 |
|
43 |
|
simprr |
|
44 |
|
simpl |
|
45 |
|
simpr2 |
|
46 |
|
simpr1 |
|
47 |
|
simpr3 |
|
48 |
|
btwnswapid |
|
49 |
44 45 46 47 48
|
syl13anc |
|
50 |
49
|
adantr |
|
51 |
42 43 50
|
mp2and |
|
52 |
51
|
expr |
|
53 |
41 52
|
mtod |
|
54 |
53
|
3exp2 |
|
55 |
|
simpr3 |
|
56 |
55
|
neneqd |
|
57 |
|
simprl1 |
|
58 |
|
simprr |
|
59 |
44 46 45 47 58
|
btwncomand |
|
60 |
|
3anrot |
|
61 |
|
btwnswapid |
|
62 |
60 61
|
sylan2br |
|
63 |
62
|
adantr |
|
64 |
57 59 63
|
mp2and |
|
65 |
64
|
expr |
|
66 |
56 65
|
mtod |
|
67 |
66
|
3exp2 |
|
68 |
54 67
|
jaod |
|
69 |
68
|
com12 |
|
70 |
69
|
com4l |
|
71 |
70
|
3imp2 |
|
72 |
39 71
|
jca |
|
73 |
31 72
|
impbida |
|
74 |
1 73
|
syl5bb |
|