Metamath Proof Explorer


Theorem broutsideof

Description: Binary relation form of OutsideOf . Theorem 6.4 of Schwabhauser p. 43. (Contributed by Scott Fenton, 17-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion broutsideof POutsideOfABPColinearAB¬PBtwnAB

Proof

Step Hyp Ref Expression
1 df-outsideof OutsideOf=ColinearBtwn
2 1 breqi POutsideOfABPColinearBtwnAB
3 brdif PColinearBtwnABPColinearAB¬PBtwnAB
4 2 3 bitri POutsideOfABPColinearAB¬PBtwnAB