Description: The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brxrncnvep | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ ◡ E ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐴 𝑅 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxrn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ ◡ E ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 ◡ E 𝐶 ) ) ) | |
| 2 | brcnvep | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ E 𝐶 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 3 | 2 | anbi1cd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐴 ◡ E 𝐶 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐴 𝑅 𝐵 ) ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐴 ◡ E 𝐶 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐴 𝑅 𝐵 ) ) ) |
| 5 | 1 4 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ ◡ E ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐴 𝑅 𝐵 ) ) ) |