Metamath Proof Explorer


Theorem brxrncnvep

Description: The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion brxrncnvep ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 ( 𝑅 E ) ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐶𝐴𝐴 𝑅 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 brxrn ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 ( 𝑅 E ) ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 𝑅 𝐵𝐴 E 𝐶 ) ) )
2 brcnvep ( 𝐴𝑉 → ( 𝐴 E 𝐶𝐶𝐴 ) )
3 2 anbi1cd ( 𝐴𝑉 → ( ( 𝐴 𝑅 𝐵𝐴 E 𝐶 ) ↔ ( 𝐶𝐴𝐴 𝑅 𝐵 ) ) )
4 3 3ad2ant1 ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝐴 𝑅 𝐵𝐴 E 𝐶 ) ↔ ( 𝐶𝐴𝐴 𝑅 𝐵 ) ) )
5 1 4 bitrd ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 ( 𝑅 E ) ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐶𝐴𝐴 𝑅 𝐵 ) ) )