Description: The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brxrncnvep | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( R |X. `' _E ) <. B , C >. <-> ( C e. A /\ A R B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxrn | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( R |X. `' _E ) <. B , C >. <-> ( A R B /\ A `' _E C ) ) ) |
|
| 2 | brcnvep | |- ( A e. V -> ( A `' _E C <-> C e. A ) ) |
|
| 3 | 2 | anbi1cd | |- ( A e. V -> ( ( A R B /\ A `' _E C ) <-> ( C e. A /\ A R B ) ) ) |
| 4 | 3 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A R B /\ A `' _E C ) <-> ( C e. A /\ A R B ) ) ) |
| 5 | 1 4 | bitrd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( R |X. `' _E ) <. B , C >. <-> ( C e. A /\ A R B ) ) ) |