Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | btwncolinear6 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 → 𝐶 Colinear 〈 𝐵 , 𝐴 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolinear1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 → 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ) ) | |
2 | colinearperm5 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ↔ 𝐶 Colinear 〈 𝐵 , 𝐴 〉 ) ) | |
3 | 1 2 | sylibd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 → 𝐶 Colinear 〈 𝐵 , 𝐴 〉 ) ) |