Metamath Proof Explorer


Theorem colinearxfr

Description: Transfer law for colinearity. Theorem 4.13 of Schwabhauser p. 37. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion colinearxfr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ) )

Proof

Step Hyp Ref Expression
1 btwnxfr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) )
2 1 expcomd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ → 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) ) )
3 2 imp ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ → 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) )
4 cgr3permute4 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐶 , ⟨ 𝐴 , 𝐵 ⟩ ⟩ Cgr3 ⟨ 𝐹 , ⟨ 𝐷 , 𝐸 ⟩ ⟩ ) )
5 biid ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ )
6 3anrot ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
7 3anrot ( ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) )
8 btwnxfr ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∧ ⟨ 𝐶 , ⟨ 𝐴 , 𝐵 ⟩ ⟩ Cgr3 ⟨ 𝐹 , ⟨ 𝐷 , 𝐸 ⟩ ⟩ ) → 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ) )
9 5 6 7 8 syl3anbr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∧ ⟨ 𝐶 , ⟨ 𝐴 , 𝐵 ⟩ ⟩ Cgr3 ⟨ 𝐹 , ⟨ 𝐷 , 𝐸 ⟩ ⟩ ) → 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ) )
10 9 expcomd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐶 , ⟨ 𝐴 , 𝐵 ⟩ ⟩ Cgr3 ⟨ 𝐹 , ⟨ 𝐷 , 𝐸 ⟩ ⟩ → ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ → 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ) ) )
11 4 10 sylbid ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ → 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ) ) )
12 11 imp ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ → 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ) )
13 cgr3permute3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐵 , ⟨ 𝐶 , 𝐴 ⟩ ⟩ Cgr3 ⟨ 𝐸 , ⟨ 𝐹 , 𝐷 ⟩ ⟩ ) )
14 3anrot ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
15 3anrot ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) )
16 btwnxfr ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∧ ⟨ 𝐵 , ⟨ 𝐶 , 𝐴 ⟩ ⟩ Cgr3 ⟨ 𝐸 , ⟨ 𝐹 , 𝐷 ⟩ ⟩ ) → 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) )
17 5 14 15 16 syl3anb ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ∧ ⟨ 𝐵 , ⟨ 𝐶 , 𝐴 ⟩ ⟩ Cgr3 ⟨ 𝐸 , ⟨ 𝐹 , 𝐷 ⟩ ⟩ ) → 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) )
18 17 expcomd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , ⟨ 𝐶 , 𝐴 ⟩ ⟩ Cgr3 ⟨ 𝐸 , ⟨ 𝐹 , 𝐷 ⟩ ⟩ → ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ → 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) ) )
19 13 18 sylbid ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ → 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) ) )
20 19 imp ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ → 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) )
21 3 12 20 3orim123d ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∨ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) → ( 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ∨ 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ∨ 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) ) )
22 simp1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
23 simp22 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
24 simp21 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
25 simp23 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
26 brcolinear ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∨ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) ) )
27 22 23 24 25 26 syl13anc ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∨ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) ) )
28 27 adantr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∨ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∨ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) ) )
29 simp32 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
30 simp31 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
31 simp33 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
32 brcolinear ( ( 𝑁 ∈ ℕ ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ↔ ( 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ∨ 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ∨ 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) ) )
33 22 29 30 31 32 syl13anc ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ↔ ( 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ∨ 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ∨ 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) ) )
34 33 adantr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ↔ ( 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ∨ 𝐷 Btwn ⟨ 𝐹 , 𝐸 ⟩ ∨ 𝐹 Btwn ⟨ 𝐸 , 𝐷 ⟩ ) ) )
35 21 28 34 3imtr4d ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ → 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ) )
36 35 ex ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ → 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ) ) )
37 36 com23 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ) ) )
38 37 impd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Colinear ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → 𝐸 Colinear ⟨ 𝐷 , 𝐹 ⟩ ) )