Metamath Proof Explorer


Theorem colinearxfr

Description: Transfer law for colinearity. Theorem 4.13 of Schwabhauser p. 37. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion colinearxfr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Colinear A C A B C Cgr3 D E F E Colinear D F

Proof

Step Hyp Ref Expression
1 btwnxfr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F E Btwn D F
2 1 expcomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B Btwn A C E Btwn D F
3 2 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B Btwn A C E Btwn D F
4 cgr3permute4 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F C A B Cgr3 F D E
5 biid N N
6 3anrot C 𝔼 N A 𝔼 N B 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N
7 3anrot F 𝔼 N D 𝔼 N E 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N
8 btwnxfr N C 𝔼 N A 𝔼 N B 𝔼 N F 𝔼 N D 𝔼 N E 𝔼 N A Btwn C B C A B Cgr3 F D E D Btwn F E
9 5 6 7 8 syl3anbr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A Btwn C B C A B Cgr3 F D E D Btwn F E
10 9 expcomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C A B Cgr3 F D E A Btwn C B D Btwn F E
11 4 10 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F A Btwn C B D Btwn F E
12 11 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F A Btwn C B D Btwn F E
13 cgr3permute3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B C A Cgr3 E F D
14 3anrot A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
15 3anrot D 𝔼 N E 𝔼 N F 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N
16 btwnxfr N B 𝔼 N C 𝔼 N A 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N C Btwn B A B C A Cgr3 E F D F Btwn E D
17 5 14 15 16 syl3anb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C Btwn B A B C A Cgr3 E F D F Btwn E D
18 17 expcomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B C A Cgr3 E F D C Btwn B A F Btwn E D
19 13 18 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F C Btwn B A F Btwn E D
20 19 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F C Btwn B A F Btwn E D
21 3 12 20 3orim123d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B Btwn A C A Btwn C B C Btwn B A E Btwn D F D Btwn F E F Btwn E D
22 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N N
23 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B 𝔼 N
24 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A 𝔼 N
25 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C 𝔼 N
26 brcolinear N B 𝔼 N A 𝔼 N C 𝔼 N B Colinear A C B Btwn A C A Btwn C B C Btwn B A
27 22 23 24 25 26 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Colinear A C B Btwn A C A Btwn C B C Btwn B A
28 27 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B Colinear A C B Btwn A C A Btwn C B C Btwn B A
29 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N E 𝔼 N
30 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N
31 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N F 𝔼 N
32 brcolinear N E 𝔼 N D 𝔼 N F 𝔼 N E Colinear D F E Btwn D F D Btwn F E F Btwn E D
33 22 29 30 31 32 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N E Colinear D F E Btwn D F D Btwn F E F Btwn E D
34 33 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F E Colinear D F E Btwn D F D Btwn F E F Btwn E D
35 21 28 34 3imtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B Colinear A C E Colinear D F
36 35 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F B Colinear A C E Colinear D F
37 36 com23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Colinear A C A B C Cgr3 D E F E Colinear D F
38 37 impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Colinear A C A B C Cgr3 D E F E Colinear D F