Step |
Hyp |
Ref |
Expression |
1 |
|
btwnxfr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E Btwn <. D , F >. ) ) |
2 |
1
|
expcomd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( B Btwn <. A , C >. -> E Btwn <. D , F >. ) ) ) |
3 |
2
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( B Btwn <. A , C >. -> E Btwn <. D , F >. ) ) |
4 |
|
cgr3permute4 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. ) ) |
5 |
|
biid |
|- ( N e. NN <-> N e. NN ) |
6 |
|
3anrot |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
7 |
|
3anrot |
|- ( ( F e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) <-> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
8 |
|
btwnxfr |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Btwn <. C , B >. /\ <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. ) -> D Btwn <. F , E >. ) ) |
9 |
5 6 7 8
|
syl3anbr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( A Btwn <. C , B >. /\ <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. ) -> D Btwn <. F , E >. ) ) |
10 |
9
|
expcomd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. -> ( A Btwn <. C , B >. -> D Btwn <. F , E >. ) ) ) |
11 |
4 10
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( A Btwn <. C , B >. -> D Btwn <. F , E >. ) ) ) |
12 |
11
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( A Btwn <. C , B >. -> D Btwn <. F , E >. ) ) |
13 |
|
cgr3permute3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) ) |
14 |
|
3anrot |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
15 |
|
3anrot |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) <-> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) |
16 |
|
btwnxfr |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. B , A >. /\ <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) -> F Btwn <. E , D >. ) ) |
17 |
5 14 15 16
|
syl3anb |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( C Btwn <. B , A >. /\ <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) -> F Btwn <. E , D >. ) ) |
18 |
17
|
expcomd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. -> ( C Btwn <. B , A >. -> F Btwn <. E , D >. ) ) ) |
19 |
13 18
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( C Btwn <. B , A >. -> F Btwn <. E , D >. ) ) ) |
20 |
19
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( C Btwn <. B , A >. -> F Btwn <. E , D >. ) ) |
21 |
3 12 20
|
3orim123d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) -> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
22 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> N e. NN ) |
23 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
24 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
25 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
26 |
|
brcolinear |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Colinear <. A , C >. <-> ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) ) ) |
27 |
22 23 24 25 26
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( B Colinear <. A , C >. <-> ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) ) ) |
28 |
27
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( B Colinear <. A , C >. <-> ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) ) ) |
29 |
|
simp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
30 |
|
simp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
31 |
|
simp33 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
32 |
|
brcolinear |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( E Colinear <. D , F >. <-> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
33 |
22 29 30 31 32
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( E Colinear <. D , F >. <-> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
34 |
33
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( E Colinear <. D , F >. <-> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
35 |
21 28 34
|
3imtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( B Colinear <. A , C >. -> E Colinear <. D , F >. ) ) |
36 |
35
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( B Colinear <. A , C >. -> E Colinear <. D , F >. ) ) ) |
37 |
36
|
com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( B Colinear <. A , C >. -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> E Colinear <. D , F >. ) ) ) |
38 |
37
|
impd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Colinear <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E Colinear <. D , F >. ) ) |