| Step |
Hyp |
Ref |
Expression |
| 1 |
|
btwnxfr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E Btwn <. D , F >. ) ) |
| 2 |
1
|
expcomd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( B Btwn <. A , C >. -> E Btwn <. D , F >. ) ) ) |
| 3 |
2
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( B Btwn <. A , C >. -> E Btwn <. D , F >. ) ) |
| 4 |
|
cgr3permute4 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. ) ) |
| 5 |
|
biid |
|- ( N e. NN <-> N e. NN ) |
| 6 |
|
3anrot |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
| 7 |
|
3anrot |
|- ( ( F e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) <-> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
| 8 |
|
btwnxfr |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Btwn <. C , B >. /\ <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. ) -> D Btwn <. F , E >. ) ) |
| 9 |
5 6 7 8
|
syl3anbr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( A Btwn <. C , B >. /\ <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. ) -> D Btwn <. F , E >. ) ) |
| 10 |
9
|
expcomd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. C , <. A , B >. >. Cgr3 <. F , <. D , E >. >. -> ( A Btwn <. C , B >. -> D Btwn <. F , E >. ) ) ) |
| 11 |
4 10
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( A Btwn <. C , B >. -> D Btwn <. F , E >. ) ) ) |
| 12 |
11
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( A Btwn <. C , B >. -> D Btwn <. F , E >. ) ) |
| 13 |
|
cgr3permute3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) ) |
| 14 |
|
3anrot |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
| 15 |
|
3anrot |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) <-> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) |
| 16 |
|
btwnxfr |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. B , A >. /\ <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) -> F Btwn <. E , D >. ) ) |
| 17 |
5 14 15 16
|
syl3anb |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( C Btwn <. B , A >. /\ <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. ) -> F Btwn <. E , D >. ) ) |
| 18 |
17
|
expcomd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , <. C , A >. >. Cgr3 <. E , <. F , D >. >. -> ( C Btwn <. B , A >. -> F Btwn <. E , D >. ) ) ) |
| 19 |
13 18
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( C Btwn <. B , A >. -> F Btwn <. E , D >. ) ) ) |
| 20 |
19
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( C Btwn <. B , A >. -> F Btwn <. E , D >. ) ) |
| 21 |
3 12 20
|
3orim123d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) -> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
| 22 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> N e. NN ) |
| 23 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 24 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 25 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 26 |
|
brcolinear |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Colinear <. A , C >. <-> ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) ) ) |
| 27 |
22 23 24 25 26
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( B Colinear <. A , C >. <-> ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) ) ) |
| 28 |
27
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( B Colinear <. A , C >. <-> ( B Btwn <. A , C >. \/ A Btwn <. C , B >. \/ C Btwn <. B , A >. ) ) ) |
| 29 |
|
simp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
| 30 |
|
simp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 31 |
|
simp33 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
| 32 |
|
brcolinear |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( E Colinear <. D , F >. <-> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
| 33 |
22 29 30 31 32
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( E Colinear <. D , F >. <-> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( E Colinear <. D , F >. <-> ( E Btwn <. D , F >. \/ D Btwn <. F , E >. \/ F Btwn <. E , D >. ) ) ) |
| 35 |
21 28 34
|
3imtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> ( B Colinear <. A , C >. -> E Colinear <. D , F >. ) ) |
| 36 |
35
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> ( B Colinear <. A , C >. -> E Colinear <. D , F >. ) ) ) |
| 37 |
36
|
com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( B Colinear <. A , C >. -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> E Colinear <. D , F >. ) ) ) |
| 38 |
37
|
impd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Colinear <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E Colinear <. D , F >. ) ) |