Step |
Hyp |
Ref |
Expression |
1 |
|
simp11 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
2 |
|
simp33 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
simp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simp2r3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
simp2l2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
simp2r1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) |
7 |
|
simp31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
simpr3r |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) |
9 |
8
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) |
10 |
|
btwnconn1lem8 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) |
11 |
1 2 3 2 7 4 6 9 10
|
cgrtrand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝑑 〉 ) |
12 |
|
simp1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
13 |
|
simp2l |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
14 |
|
simp2r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
15 |
12 13 14
|
3jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
16 |
|
simpl |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) |
17 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ) |
18 |
16 17
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ) ) |
19 |
|
btwnconn1lem6 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ) ) → 〈 𝐸 , 𝐷 〉 Cgr 〈 𝐸 , 𝑑 〉 ) |
20 |
15 18 19
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐸 , 𝐷 〉 Cgr 〈 𝐸 , 𝑑 〉 ) |
21 |
1 2 3 4 5 4 6 11 20
|
cgrtr3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ) |