| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr2l |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ) |
| 2 |
1
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ) |
| 3 |
|
simpr1r |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) |
| 4 |
3
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) |
| 5 |
|
simp11 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 6 |
|
simp2l1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 7 |
|
simp31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 8 |
|
simp2r1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 9 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ) ) |
| 10 |
5 6 7 6 8 9
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ) ) |
| 11 |
|
cgrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
| 12 |
5 7 6 8 6 11
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
| 13 |
10 12
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
| 15 |
4 14
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) |
| 16 |
|
simp33 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 17 |
|
simp2r3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 18 |
|
simp2l3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 19 |
|
simpr1l |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ) |
| 20 |
19
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ) |
| 21 |
5 6 18 7 20
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐶 Btwn 〈 𝑃 , 𝑐 〉 ) |
| 22 |
|
simprll |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ) |
| 24 |
|
btwnintr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn 〈 𝑃 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ) → 𝐶 Btwn 〈 𝑃 , 𝐸 〉 ) ) |
| 25 |
5 7 6 17 18 24
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn 〈 𝑃 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ) → 𝐶 Btwn 〈 𝑃 , 𝐸 〉 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( ( 𝐶 Btwn 〈 𝑃 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ) → 𝐶 Btwn 〈 𝑃 , 𝐸 〉 ) ) |
| 27 |
21 23 26
|
mp2and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐶 Btwn 〈 𝑃 , 𝐸 〉 ) |
| 28 |
|
simpr2r |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) |
| 29 |
28
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) |
| 30 |
5 8 6 16 7 6 17 2 27 15 29
|
cgrextendand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 𝑅 〉 Cgr 〈 𝑃 , 𝐸 〉 ) |
| 31 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ↔ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝑑 , 𝑅 〉 Cgr 〈 𝑃 , 𝐸 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ) ) |
| 32 |
5 8 6 16 7 6 17 31
|
syl133anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ↔ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝑑 , 𝑅 〉 Cgr 〈 𝑃 , 𝐸 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ↔ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝑑 , 𝑅 〉 Cgr 〈 𝑃 , 𝐸 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ) ) |
| 34 |
15 30 29 33
|
mpbir3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ) |
| 35 |
5 8 7
|
cgrrflx2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ) |
| 37 |
36 4
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) |
| 38 |
2 34 37
|
3jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ∧ ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ) |
| 39 |
|
simp1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 40 |
|
simp2l |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 41 |
|
simp2r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
| 42 |
39 40 41
|
3jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
| 43 |
|
simpl |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) |
| 44 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ) |
| 45 |
43 44
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ) ) |
| 46 |
|
btwnconn1lem7 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ) ) → 𝐶 ≠ 𝑑 ) |
| 47 |
42 45 46
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐶 ≠ 𝑑 ) |
| 48 |
47
|
necomd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝑑 ≠ 𝐶 ) |
| 49 |
|
brofs2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 〈 𝑑 , 𝐶 〉 , 〈 𝑅 , 𝑃 〉 〉 OuterFiveSeg 〈 〈 𝑃 , 𝐶 〉 , 〈 𝐸 , 𝑑 〉 〉 ↔ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ∧ ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ) ) |
| 50 |
49
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝑑 , 𝐶 〉 , 〈 𝑅 , 𝑃 〉 〉 OuterFiveSeg 〈 〈 𝑃 , 𝐶 〉 , 〈 𝐸 , 𝑑 〉 〉 ∧ 𝑑 ≠ 𝐶 ) ↔ ( ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ∧ ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ∧ 𝑑 ≠ 𝐶 ) ) ) |
| 51 |
|
5segofs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝑑 , 𝐶 〉 , 〈 𝑅 , 𝑃 〉 〉 OuterFiveSeg 〈 〈 𝑃 , 𝐶 〉 , 〈 𝐸 , 𝑑 〉 〉 ∧ 𝑑 ≠ 𝐶 ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) ) |
| 52 |
50 51
|
sylbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ∧ ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ∧ 𝑑 ≠ 𝐶 ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) ) |
| 53 |
5 8 6 16 7 7 6 17 8 52
|
syl333anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ∧ ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ∧ 𝑑 ≠ 𝐶 ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( ( ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝑑 , 〈 𝐶 , 𝑅 〉 〉 Cgr3 〈 𝑃 , 〈 𝐶 , 𝐸 〉 〉 ∧ ( 〈 𝑑 , 𝑃 〉 Cgr 〈 𝑃 , 𝑑 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ∧ 𝑑 ≠ 𝐶 ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) ) |
| 55 |
38 48 54
|
mp2and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) |