Metamath Proof Explorer


Theorem btwnconn1lem8

Description: Lemma for btwnconn1 . Now, we introduce the last three points used in the construction: P , Q , and R will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of R P and E d . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem8 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d

Proof

Step Hyp Ref Expression
1 simpr2l E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R
2 1 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R
3 simpr1r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d
4 3 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d
5 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N
6 simp2l1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C 𝔼 N
7 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P 𝔼 N
8 simp2r1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N
9 cgrcomlr N C 𝔼 N P 𝔼 N C 𝔼 N d 𝔼 N C P Cgr C d P C Cgr d C
10 5 6 7 6 8 9 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C P Cgr C d P C Cgr d C
11 cgrcom N P 𝔼 N C 𝔼 N d 𝔼 N C 𝔼 N P C Cgr d C d C Cgr P C
12 5 7 6 8 6 11 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P C Cgr d C d C Cgr P C
13 10 12 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C P Cgr C d d C Cgr P C
14 13 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C P Cgr C d d C Cgr P C
15 4 14 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d C Cgr P C
16 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R 𝔼 N
17 simp2r3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N E 𝔼 N
18 simp2l3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N c 𝔼 N
19 simpr1l E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn c P
20 19 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn c P
21 5 6 18 7 20 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn P c
22 simprll A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn C c
23 22 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn C c
24 btwnintr N P 𝔼 N C 𝔼 N E 𝔼 N c 𝔼 N C Btwn P c E Btwn C c C Btwn P E
25 5 7 6 17 18 24 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C Btwn P c E Btwn C c C Btwn P E
26 25 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn P c E Btwn C c C Btwn P E
27 21 23 26 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn P E
28 simpr2r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
29 28 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C R Cgr C E
30 5 8 6 16 7 6 17 2 27 15 29 cgrextendand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d R Cgr P E
31 brcgr3 N d 𝔼 N C 𝔼 N R 𝔼 N P 𝔼 N C 𝔼 N E 𝔼 N d C R Cgr3 P C E d C Cgr P C d R Cgr P E C R Cgr C E
32 5 8 6 16 7 6 17 31 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d C R Cgr3 P C E d C Cgr P C d R Cgr P E C R Cgr C E
33 32 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d C R Cgr3 P C E d C Cgr P C d R Cgr P E C R Cgr C E
34 15 30 29 33 mpbir3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d C R Cgr3 P C E
35 5 8 7 cgrrflx2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d P Cgr P d
36 35 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d P Cgr P d
37 36 4 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d P Cgr P d C P Cgr C d
38 2 34 37 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R d C R Cgr3 P C E d P Cgr P d C P Cgr C d
39 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N A 𝔼 N B 𝔼 N
40 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N
41 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N
42 39 40 41 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N
43 simpl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
44 simprl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn C c E Btwn D d
45 43 44 jca A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d
46 btwnconn1lem7 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d
47 42 45 46 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C d
48 47 necomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d C
49 brofs2 N d 𝔼 N C 𝔼 N R 𝔼 N P 𝔼 N P 𝔼 N C 𝔼 N E 𝔼 N d 𝔼 N d C R P OuterFiveSeg P C E d C Btwn d R d C R Cgr3 P C E d P Cgr P d C P Cgr C d
50 49 anbi1d N d 𝔼 N C 𝔼 N R 𝔼 N P 𝔼 N P 𝔼 N C 𝔼 N E 𝔼 N d 𝔼 N d C R P OuterFiveSeg P C E d d C C Btwn d R d C R Cgr3 P C E d P Cgr P d C P Cgr C d d C
51 5segofs N d 𝔼 N C 𝔼 N R 𝔼 N P 𝔼 N P 𝔼 N C 𝔼 N E 𝔼 N d 𝔼 N d C R P OuterFiveSeg P C E d d C R P Cgr E d
52 50 51 sylbird N d 𝔼 N C 𝔼 N R 𝔼 N P 𝔼 N P 𝔼 N C 𝔼 N E 𝔼 N d 𝔼 N C Btwn d R d C R Cgr3 P C E d P Cgr P d C P Cgr C d d C R P Cgr E d
53 5 8 6 16 7 7 6 17 8 52 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C Btwn d R d C R Cgr3 P C E d P Cgr P d C P Cgr C d d C R P Cgr E d
54 53 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P C Btwn d R d C R Cgr3 P C E d P Cgr P d C P Cgr C d d C R P Cgr E d
55 38 48 54 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d