Description: Lemma for btwnconn1 . Under our assumptions, C and d are distinct. (Contributed by Scott Fenton, 8-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwnconn1lem7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l3 | |
|
2 | 1 | adantr | |
3 | simp2rr | |
|
4 | 3 | adantr | |
5 | simp2lr | |
|
6 | 5 | adantr | |
7 | 2 4 6 | 3jca | |
8 | simp11 | |
|
9 | simp21 | |
|
10 | simp22 | |
|
11 | simp23 | |
|
12 | simp31 | |
|
13 | simpr1 | |
|
14 | opeq2 | |
|
15 | 14 | breq1d | |
16 | 15 | 3anbi2d | |
17 | 16 | biimparc | |
18 | simp2 | |
|
19 | simp1 | |
|
20 | simp2l | |
|
21 | simp2r | |
|
22 | cgrid2 | |
|
23 | 19 20 20 21 22 | syl13anc | |
24 | 18 23 | syl5 | |
25 | 24 | imp | |
26 | opeq1 | |
|
27 | opeq2 | |
|
28 | 26 27 | breq12d | |
29 | 28 | biimparc | |
30 | simp3l | |
|
31 | axcgrid | |
|
32 | 19 20 30 20 31 | syl13anc | |
33 | 29 32 | syl5 | |
34 | 33 | expdimp | |
35 | 34 | 3ad2antr3 | |
36 | 25 35 | mpd | |
37 | 36 | ex | |
38 | 17 37 | syl5 | |
39 | 38 | expdimp | |
40 | 39 | necon3d | |
41 | 13 40 | mpd | |
42 | 41 | ex | |
43 | 8 9 10 11 12 42 | syl122anc | |
44 | 7 43 | syl5 | |
45 | 44 | imp | |