| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l3 |
|
| 2 |
1
|
adantr |
|
| 3 |
|
simp2rr |
|
| 4 |
3
|
adantr |
|
| 5 |
|
simp2lr |
|
| 6 |
5
|
adantr |
|
| 7 |
2 4 6
|
3jca |
|
| 8 |
|
simp11 |
|
| 9 |
|
simp21 |
|
| 10 |
|
simp22 |
|
| 11 |
|
simp23 |
|
| 12 |
|
simp31 |
|
| 13 |
|
simpr1 |
|
| 14 |
|
opeq2 |
|
| 15 |
14
|
breq1d |
|
| 16 |
15
|
3anbi2d |
|
| 17 |
16
|
biimparc |
|
| 18 |
|
simp2 |
|
| 19 |
|
simp1 |
|
| 20 |
|
simp2l |
|
| 21 |
|
simp2r |
|
| 22 |
|
cgrid2 |
|
| 23 |
19 20 20 21 22
|
syl13anc |
|
| 24 |
18 23
|
syl5 |
|
| 25 |
24
|
imp |
|
| 26 |
|
opeq1 |
|
| 27 |
|
opeq2 |
|
| 28 |
26 27
|
breq12d |
|
| 29 |
28
|
biimparc |
|
| 30 |
|
simp3l |
|
| 31 |
|
axcgrid |
|
| 32 |
19 20 30 20 31
|
syl13anc |
|
| 33 |
29 32
|
syl5 |
|
| 34 |
33
|
expdimp |
|
| 35 |
34
|
3ad2antr3 |
|
| 36 |
25 35
|
mpd |
|
| 37 |
36
|
ex |
|
| 38 |
17 37
|
syl5 |
|
| 39 |
38
|
expdimp |
|
| 40 |
39
|
necon3d |
|
| 41 |
13 40
|
mpd |
|
| 42 |
41
|
ex |
|
| 43 |
8 9 10 11 12 42
|
syl122anc |
|
| 44 |
7 43
|
syl5 |
|
| 45 |
44
|
imp |
|