| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l3 |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> C =/= c ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> C =/= c ) | 
						
							| 3 |  | simp2rr |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. C , d >. Cgr <. C , D >. ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> <. C , d >. Cgr <. C , D >. ) | 
						
							| 5 |  | simp2lr |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. D , c >. Cgr <. C , D >. ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> <. D , c >. Cgr <. C , D >. ) | 
						
							| 7 | 2 4 6 | 3jca |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) | 
						
							| 8 |  | simp11 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 9 |  | simp21 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 10 |  | simp22 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 11 |  | simp23 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> c e. ( EE ` N ) ) | 
						
							| 12 |  | simp31 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) | 
						
							| 13 |  | simpr1 |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C =/= c ) | 
						
							| 14 |  | opeq2 |  |-  ( C = d -> <. C , C >. = <. C , d >. ) | 
						
							| 15 | 14 | breq1d |  |-  ( C = d -> ( <. C , C >. Cgr <. C , D >. <-> <. C , d >. Cgr <. C , D >. ) ) | 
						
							| 16 | 15 | 3anbi2d |  |-  ( C = d -> ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) <-> ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) ) | 
						
							| 17 | 16 | biimparc |  |-  ( ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) /\ C = d ) -> ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) | 
						
							| 18 |  | simp2 |  |-  ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> <. C , C >. Cgr <. C , D >. ) | 
						
							| 19 |  | simp1 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 20 |  | simp2l |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 21 |  | simp2r |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 22 |  | cgrid2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) ) | 
						
							| 23 | 19 20 20 21 22 | syl13anc |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) ) | 
						
							| 24 | 18 23 | syl5 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C = D ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C = D ) | 
						
							| 26 |  | opeq1 |  |-  ( C = D -> <. C , c >. = <. D , c >. ) | 
						
							| 27 |  | opeq2 |  |-  ( C = D -> <. C , C >. = <. C , D >. ) | 
						
							| 28 | 26 27 | breq12d |  |-  ( C = D -> ( <. C , c >. Cgr <. C , C >. <-> <. D , c >. Cgr <. C , D >. ) ) | 
						
							| 29 | 28 | biimparc |  |-  ( ( <. D , c >. Cgr <. C , D >. /\ C = D ) -> <. C , c >. Cgr <. C , C >. ) | 
						
							| 30 |  | simp3l |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> c e. ( EE ` N ) ) | 
						
							| 31 |  | axcgrid |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ c e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. C , c >. Cgr <. C , C >. -> C = c ) ) | 
						
							| 32 | 19 20 30 20 31 | syl13anc |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. C , c >. Cgr <. C , C >. -> C = c ) ) | 
						
							| 33 | 29 32 | syl5 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( <. D , c >. Cgr <. C , D >. /\ C = D ) -> C = c ) ) | 
						
							| 34 | 33 | expdimp |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ <. D , c >. Cgr <. C , D >. ) -> ( C = D -> C = c ) ) | 
						
							| 35 | 34 | 3ad2antr3 |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> ( C = D -> C = c ) ) | 
						
							| 36 | 25 35 | mpd |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C = c ) | 
						
							| 37 | 36 | ex |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C = c ) ) | 
						
							| 38 | 17 37 | syl5 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) /\ C = d ) -> C = c ) ) | 
						
							| 39 | 38 | expdimp |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> ( C = d -> C = c ) ) | 
						
							| 40 | 39 | necon3d |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> ( C =/= c -> C =/= d ) ) | 
						
							| 41 | 13 40 | mpd |  |-  ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C =/= d ) | 
						
							| 42 | 41 | ex |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C =/= d ) ) | 
						
							| 43 | 8 9 10 11 12 42 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C =/= d ) ) | 
						
							| 44 | 7 43 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> C =/= d ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> C =/= d ) |