Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l3 |
|- ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> C =/= c ) |
2 |
1
|
adantr |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> C =/= c ) |
3 |
|
simp2rr |
|- ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. C , d >. Cgr <. C , D >. ) |
4 |
3
|
adantr |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> <. C , d >. Cgr <. C , D >. ) |
5 |
|
simp2lr |
|- ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. D , c >. Cgr <. C , D >. ) |
6 |
5
|
adantr |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> <. D , c >. Cgr <. C , D >. ) |
7 |
2 4 6
|
3jca |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) |
8 |
|
simp11 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN ) |
9 |
|
simp21 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
10 |
|
simp22 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
11 |
|
simp23 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> c e. ( EE ` N ) ) |
12 |
|
simp31 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) |
13 |
|
simpr1 |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C =/= c ) |
14 |
|
opeq2 |
|- ( C = d -> <. C , C >. = <. C , d >. ) |
15 |
14
|
breq1d |
|- ( C = d -> ( <. C , C >. Cgr <. C , D >. <-> <. C , d >. Cgr <. C , D >. ) ) |
16 |
15
|
3anbi2d |
|- ( C = d -> ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) <-> ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) ) |
17 |
16
|
biimparc |
|- ( ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) /\ C = d ) -> ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) |
18 |
|
simp2 |
|- ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> <. C , C >. Cgr <. C , D >. ) |
19 |
|
simp1 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> N e. NN ) |
20 |
|
simp2l |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
21 |
|
simp2r |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
22 |
|
cgrid2 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) ) |
23 |
19 20 20 21 22
|
syl13anc |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) ) |
24 |
18 23
|
syl5 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C = D ) ) |
25 |
24
|
imp |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C = D ) |
26 |
|
opeq1 |
|- ( C = D -> <. C , c >. = <. D , c >. ) |
27 |
|
opeq2 |
|- ( C = D -> <. C , C >. = <. C , D >. ) |
28 |
26 27
|
breq12d |
|- ( C = D -> ( <. C , c >. Cgr <. C , C >. <-> <. D , c >. Cgr <. C , D >. ) ) |
29 |
28
|
biimparc |
|- ( ( <. D , c >. Cgr <. C , D >. /\ C = D ) -> <. C , c >. Cgr <. C , C >. ) |
30 |
|
simp3l |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> c e. ( EE ` N ) ) |
31 |
|
axcgrid |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ c e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. C , c >. Cgr <. C , C >. -> C = c ) ) |
32 |
19 20 30 20 31
|
syl13anc |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. C , c >. Cgr <. C , C >. -> C = c ) ) |
33 |
29 32
|
syl5 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( <. D , c >. Cgr <. C , D >. /\ C = D ) -> C = c ) ) |
34 |
33
|
expdimp |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ <. D , c >. Cgr <. C , D >. ) -> ( C = D -> C = c ) ) |
35 |
34
|
3ad2antr3 |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> ( C = D -> C = c ) ) |
36 |
25 35
|
mpd |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C = c ) |
37 |
36
|
ex |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , C >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C = c ) ) |
38 |
17 37
|
syl5 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) /\ C = d ) -> C = c ) ) |
39 |
38
|
expdimp |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> ( C = d -> C = c ) ) |
40 |
39
|
necon3d |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> ( C =/= c -> C =/= d ) ) |
41 |
13 40
|
mpd |
|- ( ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) ) -> C =/= d ) |
42 |
41
|
ex |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C =/= d ) ) |
43 |
8 9 10 11 12 42
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C =/= c /\ <. C , d >. Cgr <. C , D >. /\ <. D , c >. Cgr <. C , D >. ) -> C =/= d ) ) |
44 |
7 43
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> C =/= d ) ) |
45 |
44
|
imp |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> C =/= d ) |