Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( B = C -> ( B Btwn <. A , D >. <-> C Btwn <. A , D >. ) ) |
2 |
1
|
3anbi3d |
|- ( B = C -> ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) <-> ( A =/= B /\ B Btwn <. A , C >. /\ C Btwn <. A , D >. ) ) ) |
3 |
|
orc |
|- ( C Btwn <. A , D >. -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |
4 |
3
|
3ad2ant3 |
|- ( ( A =/= B /\ B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |
5 |
2 4
|
syl6bi |
|- ( B = C -> ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) |
6 |
5
|
adantld |
|- ( B = C -> ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) |
7 |
|
simpr1 |
|- ( ( B =/= C /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> A =/= B ) |
8 |
|
simpl |
|- ( ( B =/= C /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> B =/= C ) |
9 |
|
3simpc |
|- ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) -> ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) |
10 |
9
|
adantl |
|- ( ( B =/= C /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) |
11 |
7 8 10
|
jca31 |
|- ( ( B =/= C /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) |
12 |
|
btwnconn1lem14 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |
13 |
11 12
|
sylan2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |
14 |
13
|
an12s |
|- ( ( B =/= C /\ ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |
15 |
14
|
ex |
|- ( B =/= C -> ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) |
16 |
6 15
|
pm2.61ine |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |
17 |
16
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) |