| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 3 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 4 |  | simp3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 5 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) ) | 
						
							| 6 | 1 2 3 4 5 | syl121anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) ) | 
						
							| 7 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 8 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. d e. ( EE ` N ) ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) | 
						
							| 9 | 1 2 7 4 8 | syl121anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. d e. ( EE ` N ) ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) | 
						
							| 10 |  | reeanv |  |-  ( E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) <-> ( E. c e. ( EE ` N ) ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ E. d e. ( EE ` N ) ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 11 | 6 9 10 | sylanbrc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 13 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 14 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 15 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> c e. ( EE ` N ) ) | 
						
							| 16 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 17 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 18 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. b e. ( EE ` N ) ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) ) | 
						
							| 19 | 13 14 15 16 17 18 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> E. b e. ( EE ` N ) ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) ) | 
						
							| 20 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) | 
						
							| 21 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 22 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ d e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) | 
						
							| 23 | 13 14 20 21 17 22 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) | 
						
							| 24 | 19 23 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( E. b e. ( EE ` N ) ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ E. x e. ( EE ` N ) ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( E. b e. ( EE ` N ) ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ E. x e. ( EE ` N ) ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) | 
						
							| 26 |  | reeanv |  |-  ( E. b e. ( EE ` N ) E. x e. ( EE ` N ) ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) <-> ( E. b e. ( EE ` N ) ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ E. x e. ( EE ` N ) ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) | 
						
							| 27 | 25 26 | sylibr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> E. b e. ( EE ` N ) E. x e. ( EE ` N ) ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) | 
						
							| 28 | 13 14 17 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 30 | 16 21 15 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) | 
						
							| 32 |  | simplrr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) | 
						
							| 33 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> b e. ( EE ` N ) ) | 
						
							| 34 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) | 
						
							| 35 | 32 33 34 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) | 
						
							| 36 | 29 31 35 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) ) | 
						
							| 37 |  | simpll |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) -> ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) | 
						
							| 38 |  | simplr |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) -> ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 39 |  | simpr |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) -> ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) | 
						
							| 40 | 37 38 39 | 3jca |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) -> ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) ) | 
						
							| 41 |  | btwnconn1lem2 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) ) -> x = b ) | 
						
							| 42 | 36 40 41 | syl2an |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) ) -> x = b ) | 
						
							| 43 |  | opeq2 |  |-  ( x = b -> <. A , x >. = <. A , b >. ) | 
						
							| 44 | 43 | breq2d |  |-  ( x = b -> ( d Btwn <. A , x >. <-> d Btwn <. A , b >. ) ) | 
						
							| 45 |  | opeq2 |  |-  ( x = b -> <. d , x >. = <. d , b >. ) | 
						
							| 46 | 45 | breq1d |  |-  ( x = b -> ( <. d , x >. Cgr <. D , B >. <-> <. d , b >. Cgr <. D , B >. ) ) | 
						
							| 47 | 44 46 | anbi12d |  |-  ( x = b -> ( ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) <-> ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) | 
						
							| 48 | 47 | anbi2d |  |-  ( x = b -> ( ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) <-> ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) | 
						
							| 49 | 48 | anbi2d |  |-  ( x = b -> ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) <-> ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) ) | 
						
							| 50 | 49 | biimpac |  |-  ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) /\ x = b ) -> ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) | 
						
							| 51 | 32 33 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) | 
						
							| 52 | 29 31 51 | jca32 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) ) | 
						
							| 53 |  | simpll |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) | 
						
							| 54 |  | simplr |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 55 |  | simpr |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) | 
						
							| 56 | 53 54 55 | 3jca |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) | 
						
							| 57 |  | btwnconn1lem13 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( C = c \/ D = d ) ) | 
						
							| 58 | 52 56 57 | syl2an |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( C = c \/ D = d ) ) | 
						
							| 59 | 58 | ex |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> ( C = c \/ D = d ) ) ) | 
						
							| 60 | 50 59 | syl5 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) /\ x = b ) -> ( C = c \/ D = d ) ) ) | 
						
							| 61 | 60 | expdimp |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) ) -> ( x = b -> ( C = c \/ D = d ) ) ) | 
						
							| 62 | 42 61 | mpd |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) ) -> ( C = c \/ D = d ) ) | 
						
							| 63 | 62 | an4s |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) /\ ( ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) ) ) -> ( C = c \/ D = d ) ) | 
						
							| 64 | 63 | exp32 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( ( b e. ( EE ` N ) /\ x e. ( EE ` N ) ) -> ( ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) -> ( C = c \/ D = d ) ) ) ) | 
						
							| 65 | 64 | rexlimdvv |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( E. b e. ( EE ` N ) E. x e. ( EE ` N ) ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , x >. /\ <. d , x >. Cgr <. D , B >. ) ) -> ( C = c \/ D = d ) ) ) | 
						
							| 66 | 27 65 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( C = c \/ D = d ) ) | 
						
							| 67 |  | orcom |  |-  ( ( C = c \/ D = d ) <-> ( D = d \/ C = c ) ) | 
						
							| 68 |  | simprrl |  |-  ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) -> C Btwn <. A , d >. ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> C Btwn <. A , d >. ) | 
						
							| 70 |  | opeq2 |  |-  ( D = d -> <. A , D >. = <. A , d >. ) | 
						
							| 71 | 70 | breq2d |  |-  ( D = d -> ( C Btwn <. A , D >. <-> C Btwn <. A , d >. ) ) | 
						
							| 72 | 69 71 | syl5ibrcom |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( D = d -> C Btwn <. A , D >. ) ) | 
						
							| 73 |  | simprll |  |-  ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) -> D Btwn <. A , c >. ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> D Btwn <. A , c >. ) | 
						
							| 75 |  | opeq2 |  |-  ( C = c -> <. A , C >. = <. A , c >. ) | 
						
							| 76 | 75 | breq2d |  |-  ( C = c -> ( D Btwn <. A , C >. <-> D Btwn <. A , c >. ) ) | 
						
							| 77 | 74 76 | syl5ibrcom |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( C = c -> D Btwn <. A , C >. ) ) | 
						
							| 78 | 72 77 | orim12d |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( ( D = d \/ C = c ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) | 
						
							| 79 | 67 78 | biimtrid |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( ( C = c \/ D = d ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) | 
						
							| 80 | 66 79 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) | 
						
							| 81 | 80 | an4s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) /\ ( ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) | 
						
							| 82 | 81 | exp32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> ( ( c e. ( EE ` N ) /\ d e. ( EE ` N ) ) -> ( ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) ) | 
						
							| 83 | 82 | rexlimdvv |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> ( E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) | 
						
							| 84 | 12 83 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) |