| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | simp2l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | simp3r | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 5 |  | axsegcon | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 6 | 1 2 3 4 5 | syl121anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 7 |  | simp3l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 |  | axsegcon | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 9 | 1 2 7 4 8 | syl121anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 10 |  | reeanv | ⊢ ( ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ↔  ( ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) | 
						
							| 11 | 6 9 10 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) )  →  ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) | 
						
							| 13 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 14 |  | simpl2l | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 15 |  | simprl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 16 |  | simpl3l | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 17 |  | simpl2r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 18 |  | axsegcon | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 ) ) | 
						
							| 19 | 13 14 15 16 17 18 | syl122anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 ) ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 21 |  | simpl3r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 22 |  | axsegcon | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) | 
						
							| 23 | 13 14 20 21 17 22 | syl122anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) | 
						
							| 24 | 19 23 | jca | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 26 |  | reeanv | ⊢ ( ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) )  ↔  ( ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 27 | 25 26 | sylibr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 28 | 13 14 17 | 3jca | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 30 | 16 21 15 | 3jca | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 32 |  | simplrr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 33 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 34 |  | simprr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 35 | 32 33 34 | 3jca | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 36 | 29 31 35 | 3jca | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) ) ) | 
						
							| 37 |  | simpll | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 40 | 37 38 39 | 3jca | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) ) | 
						
							| 41 |  | btwnconn1lem2 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑥  =  𝑏 ) | 
						
							| 42 | 36 40 41 | syl2an | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑥  =  𝑏 ) | 
						
							| 43 |  | opeq2 | ⊢ ( 𝑥  =  𝑏  →  〈 𝐴 ,  𝑥 〉  =  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 44 | 43 | breq2d | ⊢ ( 𝑥  =  𝑏  →  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ↔  𝑑  Btwn  〈 𝐴 ,  𝑏 〉 ) ) | 
						
							| 45 |  | opeq2 | ⊢ ( 𝑥  =  𝑏  →  〈 𝑑 ,  𝑥 〉  =  〈 𝑑 ,  𝑏 〉 ) | 
						
							| 46 | 45 | breq1d | ⊢ ( 𝑥  =  𝑏  →  ( 〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉  ↔  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) | 
						
							| 47 | 44 46 | anbi12d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 )  ↔  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 48 | 47 | anbi2d | ⊢ ( 𝑥  =  𝑏  →  ( ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) )  ↔  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) ) | 
						
							| 49 | 48 | anbi2d | ⊢ ( 𝑥  =  𝑏  →  ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ↔  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) ) ) | 
						
							| 50 | 49 | biimpac | ⊢ ( ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  𝑥  =  𝑏 )  →  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) ) | 
						
							| 51 | 32 33 | jca | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 52 | 29 31 51 | jca32 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) ) ) ) | 
						
							| 53 |  | simpll | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) ) | 
						
							| 54 |  | simplr | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) | 
						
							| 56 | 53 54 55 | 3jca | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) ) | 
						
							| 57 |  | btwnconn1lem13 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) | 
						
							| 58 | 52 56 57 | syl2an | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) ) | 
						
							| 60 | 50 59 | syl5 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  𝑥  =  𝑏 )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) ) | 
						
							| 61 | 60 | expdimp | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝑥  =  𝑏  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) ) | 
						
							| 62 | 42 61 | mpd | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) | 
						
							| 63 | 62 | an4s | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  ∧  ( ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) | 
						
							| 64 | 63 | exp32 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) ) ) | 
						
							| 65 | 64 | rexlimdvv | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑥 〉  ∧  〈 𝑑 ,  𝑥 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) ) | 
						
							| 66 | 27 65 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 ) ) | 
						
							| 67 |  | orcom | ⊢ ( ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 )  ↔  ( 𝐷  =  𝑑  ∨  𝐶  =  𝑐 ) ) | 
						
							| 68 |  | simprrl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 70 |  | opeq2 | ⊢ ( 𝐷  =  𝑑  →  〈 𝐴 ,  𝐷 〉  =  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 71 | 70 | breq2d | ⊢ ( 𝐷  =  𝑑  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ↔  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) ) | 
						
							| 72 | 69 71 | syl5ibrcom | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( 𝐷  =  𝑑  →  𝐶  Btwn  〈 𝐴 ,  𝐷 〉 ) ) | 
						
							| 73 |  | simprll | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 75 |  | opeq2 | ⊢ ( 𝐶  =  𝑐  →  〈 𝐴 ,  𝐶 〉  =  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 76 | 75 | breq2d | ⊢ ( 𝐶  =  𝑐  →  ( 𝐷  Btwn  〈 𝐴 ,  𝐶 〉  ↔  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) ) | 
						
							| 77 | 74 76 | syl5ibrcom | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( 𝐶  =  𝑐  →  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) | 
						
							| 78 | 72 77 | orim12d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( ( 𝐷  =  𝑑  ∨  𝐶  =  𝑐 )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) ) | 
						
							| 79 | 67 78 | biimtrid | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( ( 𝐶  =  𝑐  ∨  𝐷  =  𝑑 )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) ) | 
						
							| 80 | 66 79 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) | 
						
							| 81 | 80 | an4s | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) )  ∧  ( ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) | 
						
							| 82 | 81 | exp32 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) )  →  ( ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) ) ) | 
						
							| 83 | 82 | rexlimdvv | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) )  →  ( ∃ 𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) ) | 
						
							| 84 | 12 83 | mpd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ∨  𝐷  Btwn  〈 𝐴 ,  𝐶 〉 ) ) |