| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne |  |-  ( C =/= c <-> -. C = c ) | 
						
							| 2 |  | simp2rl |  |-  ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> C Btwn <. A , d >. ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> C Btwn <. A , d >. ) | 
						
							| 4 |  | simp2ll |  |-  ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> D Btwn <. A , c >. ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> D Btwn <. A , c >. ) | 
						
							| 6 | 3 5 | jca |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( C Btwn <. A , d >. /\ D Btwn <. A , c >. ) ) | 
						
							| 7 |  | simpl1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> N e. NN ) | 
						
							| 8 |  | simprl1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 9 |  | simpl2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 10 |  | simprrl |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> d e. ( EE ` N ) ) | 
						
							| 11 |  | btwncom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( C Btwn <. A , d >. <-> C Btwn <. d , A >. ) ) | 
						
							| 12 | 7 8 9 10 11 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( C Btwn <. A , d >. <-> C Btwn <. d , A >. ) ) | 
						
							| 13 |  | simprl2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 14 |  | simprl3 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> c e. ( EE ` N ) ) | 
						
							| 15 |  | btwncom |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( D Btwn <. A , c >. <-> D Btwn <. c , A >. ) ) | 
						
							| 16 | 7 13 9 14 15 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( D Btwn <. A , c >. <-> D Btwn <. c , A >. ) ) | 
						
							| 17 | 12 16 | anbi12d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( C Btwn <. A , d >. /\ D Btwn <. A , c >. ) <-> ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) ) ) | 
						
							| 18 | 6 17 | imbitrid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) ) ) | 
						
							| 19 |  | axpasch |  |-  ( ( N e. NN /\ ( d e. ( EE ` N ) /\ c e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) | 
						
							| 20 | 7 10 14 9 8 13 19 | syl132anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) | 
						
							| 21 | 18 20 | syld |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) | 
						
							| 23 |  | simpll1 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 24 | 14 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> c e. ( EE ` N ) ) | 
						
							| 25 | 8 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 26 | 10 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> d e. ( EE ` N ) ) | 
						
							| 27 |  | axsegcon |  |-  ( ( N e. NN /\ ( c e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> E. p e. ( EE ` N ) ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) ) | 
						
							| 28 | 23 24 25 25 26 27 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> E. p e. ( EE ` N ) ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> e e. ( EE ` N ) ) | 
						
							| 30 |  | axsegcon |  |-  ( ( N e. NN /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. r e. ( EE ` N ) ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) | 
						
							| 31 | 23 26 25 25 29 30 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> E. r e. ( EE ` N ) ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) | 
						
							| 32 |  | reeanv |  |-  ( E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) <-> ( E. p e. ( EE ` N ) ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ E. r e. ( EE ` N ) ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) | 
						
							| 33 | 28 31 32 | sylanbrc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) | 
						
							| 35 | 7 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 36 |  | simprl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> p e. ( EE ` N ) ) | 
						
							| 37 |  | simprr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> r e. ( EE ` N ) ) | 
						
							| 38 |  | axsegcon |  |-  ( ( N e. NN /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( r e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> E. q e. ( EE ` N ) ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) | 
						
							| 39 | 35 36 37 37 36 38 | syl122anc |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> E. q e. ( EE ` N ) ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) -> E. q e. ( EE ` N ) ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) | 
						
							| 41 |  | simp-4l |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 42 |  | simplrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) | 
						
							| 44 | 10 | ad3antrrr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> d e. ( EE ` N ) ) | 
						
							| 45 |  | simprrr |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> b e. ( EE ` N ) ) | 
						
							| 46 | 45 | ad3antrrr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> b e. ( EE ` N ) ) | 
						
							| 47 |  | simpllr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> e e. ( EE ` N ) ) | 
						
							| 48 | 44 46 47 | 3jca |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) | 
						
							| 49 | 43 48 | jca |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) ) | 
						
							| 50 |  | simplrl |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> p e. ( EE ` N ) ) | 
						
							| 51 |  | simpr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> q e. ( EE ` N ) ) | 
						
							| 52 |  | simplrr |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> r e. ( EE ` N ) ) | 
						
							| 53 | 50 51 52 | 3jca |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( p e. ( EE ` N ) /\ q e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) | 
						
							| 54 | 41 49 53 | 3jca |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( p e. ( EE ` N ) /\ q e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) ) | 
						
							| 55 |  | simp1ll |  |-  ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> A =/= B ) | 
						
							| 56 | 55 | ad3antrrr |  |-  ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) -> A =/= B ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> A =/= B ) | 
						
							| 58 |  | simp1lr |  |-  ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> B =/= C ) | 
						
							| 59 | 58 | ad3antrrr |  |-  ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) -> B =/= C ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> B =/= C ) | 
						
							| 61 |  | simpllr |  |-  ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) -> C =/= c ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> C =/= c ) | 
						
							| 63 | 57 60 62 | 3jca |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( A =/= B /\ B =/= C /\ C =/= c ) ) | 
						
							| 64 |  | simpl1r |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) | 
						
							| 65 | 64 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) | 
						
							| 66 | 63 65 | jca |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) | 
						
							| 67 |  | simpll2 |  |-  ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) -> ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) | 
						
							| 69 |  | simpl3l |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) ) | 
						
							| 70 | 69 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) ) | 
						
							| 71 |  | simpl3r |  |-  ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) | 
						
							| 72 | 71 | ad3antrrr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) | 
						
							| 73 | 70 72 | jca |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) | 
						
							| 74 | 66 68 73 | 3jca |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) | 
						
							| 75 |  | simpllr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) | 
						
							| 76 |  | simplrl |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) ) | 
						
							| 77 |  | simplrr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) | 
						
							| 78 |  | simpr |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) | 
						
							| 79 | 76 77 78 | 3jca |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) | 
						
							| 80 | 74 75 79 | jca32 |  |-  ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) ) ) | 
						
							| 81 |  | btwnconn1lem12 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( p e. ( EE ` N ) /\ q e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) ) ) -> D = d ) | 
						
							| 82 | 54 80 81 | syl2an |  |-  ( ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) /\ ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) -> D = d ) | 
						
							| 83 | 82 | an4s |  |-  ( ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) /\ ( q e. ( EE ` N ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) -> D = d ) | 
						
							| 84 | 40 83 | rexlimddv |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) -> D = d ) | 
						
							| 85 | 84 | an4s |  |-  ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) /\ ( ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) -> D = d ) | 
						
							| 86 | 85 | exp32 |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> ( ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) -> ( ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) -> D = d ) ) ) | 
						
							| 87 | 86 | rexlimdvv |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> ( E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) -> D = d ) ) | 
						
							| 88 | 34 87 | mpd |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> D = d ) | 
						
							| 89 | 88 | an4s |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) ) /\ ( e e. ( EE ` N ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> D = d ) | 
						
							| 90 | 22 89 | rexlimddv |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) ) -> D = d ) | 
						
							| 91 | 90 | expr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( C =/= c -> D = d ) ) | 
						
							| 92 | 1 91 | biimtrrid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( -. C = c -> D = d ) ) | 
						
							| 93 | 92 | orrd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( C = c \/ D = d ) ) |