| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|- ( C =/= c <-> -. C = c ) |
| 2 |
|
simp2rl |
|- ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> C Btwn <. A , d >. ) |
| 3 |
2
|
adantr |
|- ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> C Btwn <. A , d >. ) |
| 4 |
|
simp2ll |
|- ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> D Btwn <. A , c >. ) |
| 5 |
4
|
adantr |
|- ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> D Btwn <. A , c >. ) |
| 6 |
3 5
|
jca |
|- ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( C Btwn <. A , d >. /\ D Btwn <. A , c >. ) ) |
| 7 |
|
simpl1 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> N e. NN ) |
| 8 |
|
simprl1 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) |
| 9 |
|
simpl2 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) |
| 10 |
|
simprrl |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> d e. ( EE ` N ) ) |
| 11 |
|
btwncom |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( C Btwn <. A , d >. <-> C Btwn <. d , A >. ) ) |
| 12 |
7 8 9 10 11
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( C Btwn <. A , d >. <-> C Btwn <. d , A >. ) ) |
| 13 |
|
simprl2 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> D e. ( EE ` N ) ) |
| 14 |
|
simprl3 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> c e. ( EE ` N ) ) |
| 15 |
|
btwncom |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( D Btwn <. A , c >. <-> D Btwn <. c , A >. ) ) |
| 16 |
7 13 9 14 15
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( D Btwn <. A , c >. <-> D Btwn <. c , A >. ) ) |
| 17 |
12 16
|
anbi12d |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( C Btwn <. A , d >. /\ D Btwn <. A , c >. ) <-> ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) ) ) |
| 18 |
6 17
|
imbitrid |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) ) ) |
| 19 |
|
axpasch |
|- ( ( N e. NN /\ ( d e. ( EE ` N ) /\ c e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) |
| 20 |
7 10 14 9 8 13 19
|
syl132anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( C Btwn <. d , A >. /\ D Btwn <. c , A >. ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) |
| 21 |
18 20
|
syld |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) |
| 22 |
21
|
imp |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) ) -> E. e e. ( EE ` N ) ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) |
| 23 |
|
simpll1 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> N e. NN ) |
| 24 |
14
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> c e. ( EE ` N ) ) |
| 25 |
8
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
| 26 |
10
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> d e. ( EE ` N ) ) |
| 27 |
|
axsegcon |
|- ( ( N e. NN /\ ( c e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> E. p e. ( EE ` N ) ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) ) |
| 28 |
23 24 25 25 26 27
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> E. p e. ( EE ` N ) ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) ) |
| 29 |
|
simpr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> e e. ( EE ` N ) ) |
| 30 |
|
axsegcon |
|- ( ( N e. NN /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. r e. ( EE ` N ) ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) |
| 31 |
23 26 25 25 29 30
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> E. r e. ( EE ` N ) ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) |
| 32 |
|
reeanv |
|- ( E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) <-> ( E. p e. ( EE ` N ) ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ E. r e. ( EE ` N ) ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) |
| 33 |
28 31 32
|
sylanbrc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) |
| 35 |
7
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> N e. NN ) |
| 36 |
|
simprl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> p e. ( EE ` N ) ) |
| 37 |
|
simprr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> r e. ( EE ` N ) ) |
| 38 |
|
axsegcon |
|- ( ( N e. NN /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( r e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> E. q e. ( EE ` N ) ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) |
| 39 |
35 36 37 37 36 38
|
syl122anc |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) -> E. q e. ( EE ` N ) ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) |
| 40 |
39
|
adantr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) -> E. q e. ( EE ` N ) ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) |
| 41 |
|
simp-4l |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
| 42 |
|
simplrl |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) |
| 44 |
10
|
ad3antrrr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> d e. ( EE ` N ) ) |
| 45 |
|
simprrr |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) -> b e. ( EE ` N ) ) |
| 46 |
45
|
ad3antrrr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> b e. ( EE ` N ) ) |
| 47 |
|
simpllr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> e e. ( EE ` N ) ) |
| 48 |
44 46 47
|
3jca |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) |
| 49 |
43 48
|
jca |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) ) |
| 50 |
|
simplrl |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> p e. ( EE ` N ) ) |
| 51 |
|
simpr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> q e. ( EE ` N ) ) |
| 52 |
|
simplrr |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> r e. ( EE ` N ) ) |
| 53 |
50 51 52
|
3jca |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( p e. ( EE ` N ) /\ q e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) |
| 54 |
41 49 53
|
3jca |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( p e. ( EE ` N ) /\ q e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) ) |
| 55 |
|
simp1ll |
|- ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> A =/= B ) |
| 56 |
55
|
ad3antrrr |
|- ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) -> A =/= B ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> A =/= B ) |
| 58 |
|
simp1lr |
|- ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> B =/= C ) |
| 59 |
58
|
ad3antrrr |
|- ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) -> B =/= C ) |
| 60 |
59
|
adantr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> B =/= C ) |
| 61 |
|
simpllr |
|- ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) -> C =/= c ) |
| 62 |
61
|
adantr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> C =/= c ) |
| 63 |
57 60 62
|
3jca |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( A =/= B /\ B =/= C /\ C =/= c ) ) |
| 64 |
|
simpl1r |
|- ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) |
| 65 |
64
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) |
| 66 |
63 65
|
jca |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) ) |
| 67 |
|
simpll2 |
|- ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) -> ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) ) |
| 69 |
|
simpl3l |
|- ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) ) |
| 70 |
69
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) ) |
| 71 |
|
simpl3r |
|- ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) -> ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) |
| 72 |
71
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) |
| 73 |
70 72
|
jca |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) |
| 74 |
66 68 73
|
3jca |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) |
| 75 |
|
simpllr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) |
| 76 |
|
simplrl |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) ) |
| 77 |
|
simplrr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) |
| 78 |
|
simpr |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) |
| 79 |
76 77 78
|
3jca |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) |
| 80 |
74 75 79
|
jca32 |
|- ( ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) -> ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) ) ) |
| 81 |
|
btwnconn1lem12 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( p e. ( EE ` N ) /\ q e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) ) ) -> D = d ) |
| 82 |
54 80 81
|
syl2an |
|- ( ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ q e. ( EE ` N ) ) /\ ( ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) -> D = d ) |
| 83 |
82
|
an4s |
|- ( ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) /\ ( q e. ( EE ` N ) /\ ( r Btwn <. p , q >. /\ <. r , q >. Cgr <. r , p >. ) ) ) -> D = d ) |
| 84 |
40 83
|
rexlimddv |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) /\ ( ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) -> D = d ) |
| 85 |
84
|
an4s |
|- ( ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) /\ ( ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) ) ) -> D = d ) |
| 86 |
85
|
exp32 |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> ( ( p e. ( EE ` N ) /\ r e. ( EE ` N ) ) -> ( ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) -> D = d ) ) ) |
| 87 |
86
|
rexlimdvv |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> ( E. p e. ( EE ` N ) E. r e. ( EE ` N ) ( ( C Btwn <. c , p >. /\ <. C , p >. Cgr <. C , d >. ) /\ ( C Btwn <. d , r >. /\ <. C , r >. Cgr <. C , e >. ) ) -> D = d ) ) |
| 88 |
34 87
|
mpd |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> D = d ) |
| 89 |
88
|
an4s |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) ) /\ ( e e. ( EE ` N ) /\ ( e Btwn <. C , c >. /\ e Btwn <. D , d >. ) ) ) -> D = d ) |
| 90 |
22 89
|
rexlimddv |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ C =/= c ) ) -> D = d ) |
| 91 |
90
|
expr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( C =/= c -> D = d ) ) |
| 92 |
1 91
|
biimtrrid |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( -. C = c -> D = d ) ) |
| 93 |
92
|
orrd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) ) /\ ( ( ( A =/= B /\ B =/= C ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> ( C = c \/ D = d ) ) |