Metamath Proof Explorer


Theorem btwnconn1lem13

Description: Lemma for btwnconn1 . Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013)

Ref Expression
Assertion btwnconn1lem13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C = c D = d

Proof

Step Hyp Ref Expression
1 df-ne C c ¬ C = c
2 simp2rl A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C Btwn A d
3 2 adantr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c C Btwn A d
4 simp2ll A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B D Btwn A c
5 4 adantr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c D Btwn A c
6 3 5 jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c C Btwn A d D Btwn A c
7 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N N
8 simprl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C 𝔼 N
9 simpl2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A 𝔼 N
10 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N d 𝔼 N
11 btwncom N C 𝔼 N A 𝔼 N d 𝔼 N C Btwn A d C Btwn d A
12 7 8 9 10 11 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C Btwn A d C Btwn d A
13 simprl2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N D 𝔼 N
14 simprl3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N c 𝔼 N
15 btwncom N D 𝔼 N A 𝔼 N c 𝔼 N D Btwn A c D Btwn c A
16 7 13 9 14 15 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N D Btwn A c D Btwn c A
17 12 16 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C Btwn A d D Btwn A c C Btwn d A D Btwn c A
18 6 17 syl5ib N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c C Btwn d A D Btwn c A
19 axpasch N d 𝔼 N c 𝔼 N A 𝔼 N C 𝔼 N D 𝔼 N C Btwn d A D Btwn c A e 𝔼 N e Btwn C c e Btwn D d
20 7 10 14 9 8 13 19 syl132anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C Btwn d A D Btwn c A e 𝔼 N e Btwn C c e Btwn D d
21 18 20 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e 𝔼 N e Btwn C c e Btwn D d
22 21 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e 𝔼 N e Btwn C c e Btwn D d
23 simpll1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N N
24 14 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N c 𝔼 N
25 8 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N C 𝔼 N
26 10 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N d 𝔼 N
27 axsegcon N c 𝔼 N C 𝔼 N C 𝔼 N d 𝔼 N p 𝔼 N C Btwn c p C p Cgr C d
28 23 24 25 25 26 27 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N C Btwn c p C p Cgr C d
29 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N e 𝔼 N
30 axsegcon N d 𝔼 N C 𝔼 N C 𝔼 N e 𝔼 N r 𝔼 N C Btwn d r C r Cgr C e
31 23 26 25 25 29 30 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N r 𝔼 N C Btwn d r C r Cgr C e
32 reeanv p 𝔼 N r 𝔼 N C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e p 𝔼 N C Btwn c p C p Cgr C d r 𝔼 N C Btwn d r C r Cgr C e
33 28 31 32 sylanbrc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e
34 33 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d p 𝔼 N r 𝔼 N C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e
35 7 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N N
36 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N p 𝔼 N
37 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N r 𝔼 N
38 axsegcon N p 𝔼 N r 𝔼 N r 𝔼 N p 𝔼 N q 𝔼 N r Btwn p q r q Cgr r p
39 35 36 37 37 36 38 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N r Btwn p q r q Cgr r p
40 39 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e q 𝔼 N r Btwn p q r q Cgr r p
41 simp-4l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N N A 𝔼 N B 𝔼 N
42 simplrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N
43 42 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N
44 10 ad3antrrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N d 𝔼 N
45 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N b 𝔼 N
46 45 ad3antrrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N b 𝔼 N
47 simpllr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N e 𝔼 N
48 44 46 47 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N
49 43 48 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N
50 simplrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N p 𝔼 N
51 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N q 𝔼 N
52 simplrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N r 𝔼 N
53 50 51 52 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N p 𝔼 N q 𝔼 N r 𝔼 N
54 41 49 53 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N q 𝔼 N r 𝔼 N
55 simp1ll A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B A B
56 55 ad3antrrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e A B
57 56 adantr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p A B
58 simp1lr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B C
59 58 ad3antrrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e B C
60 59 adantr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p B C
61 simpllr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e C c
62 61 adantr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p C c
63 57 60 62 3jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p A B B C C c
64 simpl1r A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c B Btwn A C B Btwn A D
65 64 ad3antrrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p B Btwn A C B Btwn A D
66 63 65 jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p A B B C C c B Btwn A C B Btwn A D
67 simpll2 A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D
68 67 ad2antrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D
69 simpl3l A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c c Btwn A b c b Cgr C B
70 69 ad3antrrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p c Btwn A b c b Cgr C B
71 simpl3r A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c d Btwn A b d b Cgr D B
72 71 ad3antrrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p d Btwn A b d b Cgr D B
73 70 72 jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
74 66 68 73 3jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
75 simpllr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p e Btwn C c e Btwn D d
76 simplrl A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p C Btwn c p C p Cgr C d
77 simplrr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p C Btwn d r C r Cgr C e
78 simpr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p r Btwn p q r q Cgr r p
79 76 77 78 3jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p
80 74 75 79 jca32 A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p
81 btwnconn1lem12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N q 𝔼 N r 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p D = d
82 54 80 81 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N q 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e r Btwn p q r q Cgr r p D = d
83 82 an4s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e q 𝔼 N r Btwn p q r q Cgr r p D = d
84 40 83 rexlimddv N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N p 𝔼 N r 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e D = d
85 84 an4s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d p 𝔼 N r 𝔼 N C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e D = d
86 85 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d p 𝔼 N r 𝔼 N C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e D = d
87 86 rexlimdvv N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d p 𝔼 N r 𝔼 N C Btwn c p C p Cgr C d C Btwn d r C r Cgr C e D = d
88 34 87 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N e 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e Btwn C c e Btwn D d D = d
89 88 an4s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c e 𝔼 N e Btwn C c e Btwn D d D = d
90 22 89 rexlimddv N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c D = d
91 90 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c D = d
92 1 91 syl5bir N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B ¬ C = c D = d
93 92 orrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C = c D = d