Metamath Proof Explorer


Theorem btwnconn1

Description: Connectitivy law for betweenness. Theorem 5.1 of Schwabhauser p. 39-41. (Contributed by Scott Fenton, 9-Oct-2013)

Ref Expression
Assertion btwnconn1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C

Proof

Step Hyp Ref Expression
1 breq1 B = C B Btwn A D C Btwn A D
2 1 3anbi3d B = C A B B Btwn A C B Btwn A D A B B Btwn A C C Btwn A D
3 orc C Btwn A D C Btwn A D D Btwn A C
4 3 3ad2ant3 A B B Btwn A C C Btwn A D C Btwn A D D Btwn A C
5 2 4 syl6bi B = C A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
6 5 adantld B = C N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
7 simpr1 B C A B B Btwn A C B Btwn A D A B
8 simpl B C A B B Btwn A C B Btwn A D B C
9 3simpc A B B Btwn A C B Btwn A D B Btwn A C B Btwn A D
10 9 adantl B C A B B Btwn A C B Btwn A D B Btwn A C B Btwn A D
11 7 8 10 jca31 B C A B B Btwn A C B Btwn A D A B B C B Btwn A C B Btwn A D
12 btwnconn1lem14 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B C B Btwn A C B Btwn A D C Btwn A D D Btwn A C
13 11 12 sylan2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
14 13 an12s B C N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
15 14 ex B C N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
16 6 15 pm2.61ine N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
17 16 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C