Metamath Proof Explorer


Theorem btwnconn2

Description: Another connectivity law for betweenness. Theorem 5.2 of Schwabhauser p. 41. (Contributed by Scott Fenton, 9-Oct-2013)

Ref Expression
Assertion btwnconn2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn B D D Btwn B C

Proof

Step Hyp Ref Expression
1 btwnconn1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C
2 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D B Btwn A C
3 2 anim1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D B Btwn A C C Btwn A D
4 btwnexch3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D C Btwn B D
5 4 ad2antrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D B Btwn A C C Btwn A D C Btwn B D
6 3 5 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D C Btwn B D
7 6 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D C Btwn B D
8 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D B Btwn A D
9 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
10 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
11 9 10 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N C 𝔼 N
12 btwnexch3 N A 𝔼 N B 𝔼 N D 𝔼 N C 𝔼 N B Btwn A D D Btwn A C D Btwn B C
13 11 12 syld3an3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A D D Btwn A C D Btwn B C
14 13 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D B Btwn A D D Btwn A C D Btwn B C
15 8 14 mpand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D D Btwn A C D Btwn B C
16 7 15 orim12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C C Btwn B D D Btwn B C
17 16 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn A D D Btwn A C C Btwn B D D Btwn B C
18 1 17 mpdd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B B Btwn A C B Btwn A D C Btwn B D D Btwn B C