Metamath Proof Explorer


Theorem btwnconn3

Description: Inner connectivity law for betweenness. Theorem 5.3 of Schwabhauser p. 41. (Contributed by Scott Fenton, 9-Oct-2013)

Ref Expression
Assertion btwnconn3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A D C Btwn A D B Btwn A C C Btwn A B

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
2 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
3 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
4 btwndiff N D 𝔼 N A 𝔼 N p 𝔼 N A Btwn D p A p
5 1 2 3 4 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p
6 simprlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D A p
7 6 necomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D p A
8 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N N
9 simpl2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A 𝔼 N
10 simpl2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N B 𝔼 N
11 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N p 𝔼 N
12 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N D 𝔼 N
13 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D B Btwn A D
14 8 10 9 12 13 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D B Btwn D A
15 simprll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D A Btwn D p
16 8 12 10 9 11 14 15 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D A Btwn B p
17 8 9 10 11 16 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D A Btwn p B
18 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N C 𝔼 N
19 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D C Btwn A D
20 8 18 9 12 19 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D C Btwn D A
21 8 12 18 9 11 20 15 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D A Btwn C p
22 8 9 18 11 21 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D A Btwn p C
23 7 17 22 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D p A A Btwn p B A Btwn p C
24 23 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D p A A Btwn p B A Btwn p C
25 btwnconn2 N p 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N p A A Btwn p B A Btwn p C B Btwn A C C Btwn A B
26 8 11 9 10 18 25 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N p A A Btwn p B A Btwn p C B Btwn A C C Btwn A B
27 24 26 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D B Btwn A C C Btwn A B
28 27 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D B Btwn A C C Btwn A B
29 28 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N p 𝔼 N A Btwn D p A p B Btwn A D C Btwn A D B Btwn A C C Btwn A B
30 5 29 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A D C Btwn A D B Btwn A C C Btwn A B