| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 3 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 4 |
|
btwndiff |
|- ( ( N e. NN /\ D e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> E. p e. ( EE ` N ) ( A Btwn <. D , p >. /\ A =/= p ) ) |
| 5 |
1 2 3 4
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. p e. ( EE ` N ) ( A Btwn <. D , p >. /\ A =/= p ) ) |
| 6 |
|
simprlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A =/= p ) |
| 7 |
6
|
necomd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> p =/= A ) |
| 8 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> N e. NN ) |
| 9 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
| 10 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
| 11 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> p e. ( EE ` N ) ) |
| 12 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
| 13 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> B Btwn <. A , D >. ) |
| 14 |
8 10 9 12 13
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> B Btwn <. D , A >. ) |
| 15 |
|
simprll |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. D , p >. ) |
| 16 |
8 12 10 9 11 14 15
|
btwnexch3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. B , p >. ) |
| 17 |
8 9 10 11 16
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. p , B >. ) |
| 18 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
| 19 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> C Btwn <. A , D >. ) |
| 20 |
8 18 9 12 19
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> C Btwn <. D , A >. ) |
| 21 |
8 12 18 9 11 20 15
|
btwnexch3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. C , p >. ) |
| 22 |
8 9 18 11 21
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. p , C >. ) |
| 23 |
7 17 22
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) ) |
| 24 |
23
|
ex |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) -> ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) ) ) |
| 25 |
|
btwnconn2 |
|- ( ( N e. NN /\ ( p e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) |
| 26 |
8 11 9 10 18 25
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) |
| 27 |
24 26
|
syld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) |
| 28 |
27
|
expd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( A Btwn <. D , p >. /\ A =/= p ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) ) |
| 29 |
28
|
rexlimdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. p e. ( EE ` N ) ( A Btwn <. D , p >. /\ A =/= p ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) ) |
| 30 |
5 29
|
mpd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) |