| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 3 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 4 |  | btwndiff |  |-  ( ( N e. NN /\ D e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> E. p e. ( EE ` N ) ( A Btwn <. D , p >. /\ A =/= p ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. p e. ( EE ` N ) ( A Btwn <. D , p >. /\ A =/= p ) ) | 
						
							| 6 |  | simprlr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A =/= p ) | 
						
							| 7 | 6 | necomd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> p =/= A ) | 
						
							| 8 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 9 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 10 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> p e. ( EE ` N ) ) | 
						
							| 12 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 13 |  | simprrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> B Btwn <. A , D >. ) | 
						
							| 14 | 8 10 9 12 13 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> B Btwn <. D , A >. ) | 
						
							| 15 |  | simprll |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. D , p >. ) | 
						
							| 16 | 8 12 10 9 11 14 15 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. B , p >. ) | 
						
							| 17 | 8 9 10 11 16 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. p , B >. ) | 
						
							| 18 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 19 |  | simprrr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> C Btwn <. A , D >. ) | 
						
							| 20 | 8 18 9 12 19 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> C Btwn <. D , A >. ) | 
						
							| 21 | 8 12 18 9 11 20 15 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. C , p >. ) | 
						
							| 22 | 8 9 18 11 21 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> A Btwn <. p , C >. ) | 
						
							| 23 | 7 17 22 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) /\ ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) ) -> ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) ) | 
						
							| 24 | 23 | ex |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) -> ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) ) ) | 
						
							| 25 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( p e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 26 | 8 11 9 10 18 25 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( p =/= A /\ A Btwn <. p , B >. /\ A Btwn <. p , C >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 27 | 24 26 | syld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( ( A Btwn <. D , p >. /\ A =/= p ) /\ ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 28 | 27 | expd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ p e. ( EE ` N ) ) -> ( ( A Btwn <. D , p >. /\ A =/= p ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 29 | 28 | rexlimdva |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. p e. ( EE ` N ) ( A Btwn <. D , p >. /\ A =/= p ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) ) | 
						
							| 30 | 5 29 | mpd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. \/ C Btwn <. A , B >. ) ) ) |