| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 3 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 4 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 5 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> D Btwn <. A , E >. ) | 
						
							| 6 |  | simprl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> <. A , D >. Cgr <. A , E >. ) | 
						
							| 7 | 1 2 4 2 3 6 | cgrcomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> <. A , E >. Cgr <. A , D >. ) | 
						
							| 8 | 1 2 3 4 5 7 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> E = D ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> D = E ) | 
						
							| 10 | 9 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( D Btwn <. A , E >. -> D = E ) ) | 
						
							| 11 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ E Btwn <. A , D >. ) ) -> E Btwn <. A , D >. ) | 
						
							| 12 |  | simprl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ E Btwn <. A , D >. ) ) -> <. A , D >. Cgr <. A , E >. ) | 
						
							| 13 | 1 2 4 3 11 12 | endofsegidand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ E Btwn <. A , D >. ) ) -> D = E ) | 
						
							| 14 | 13 | expr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( E Btwn <. A , D >. -> D = E ) ) | 
						
							| 15 |  | 3simpa |  |-  ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) -> ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) ) | 
						
							| 17 |  | simp2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 18 |  | btwnconn3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) ) | 
						
							| 19 | 1 2 4 3 17 18 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) ) | 
						
							| 21 | 16 20 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) | 
						
							| 22 | 10 14 21 | mpjaod |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> D = E ) | 
						
							| 23 | 22 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) -> D = E ) ) |