Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
3 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
4 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
5 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> D Btwn <. A , E >. ) |
6 |
|
simprl3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> <. A , D >. Cgr <. A , E >. ) |
7 |
1 2 4 2 3 6
|
cgrcomand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> <. A , E >. Cgr <. A , D >. ) |
8 |
1 2 3 4 5 7
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> E = D ) |
9 |
8
|
eqcomd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ D Btwn <. A , E >. ) ) -> D = E ) |
10 |
9
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( D Btwn <. A , E >. -> D = E ) ) |
11 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ E Btwn <. A , D >. ) ) -> E Btwn <. A , D >. ) |
12 |
|
simprl3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ E Btwn <. A , D >. ) ) -> <. A , D >. Cgr <. A , E >. ) |
13 |
1 2 4 3 11 12
|
endofsegidand |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) /\ E Btwn <. A , D >. ) ) -> D = E ) |
14 |
13
|
expr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( E Btwn <. A , D >. -> D = E ) ) |
15 |
|
3simpa |
|- ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) -> ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) ) |
16 |
15
|
adantl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) ) |
17 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
18 |
|
btwnconn3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) ) |
19 |
1 2 4 3 17 18
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) ) |
20 |
19
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) ) |
21 |
16 20
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> ( D Btwn <. A , E >. \/ E Btwn <. A , D >. ) ) |
22 |
10 14 21
|
mpjaod |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) ) -> D = E ) |
23 |
22
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , B >. /\ E Btwn <. A , B >. /\ <. A , D >. Cgr <. A , E >. ) -> D = E ) ) |